

DELHI PUBLIC SCHOOL INDIRAPURAM, GHAZIABAD PRE-BOARD EXAMINATION-2 : 2023-2024

ime:	: 3 Hours	M. M. 80	CLASS – X MATHEMATICS	No. of Q.: 38	No. of Pages :
-		4	SET-B		
	Name al Instructio			Roll No.	
1. T 2. S 3. S 4. S 5. S 6. S 1 7. A	his Question ection A has ection B has ection C has fection D has fection E has 1 and 2 mark All Questions of 5 marks h	Paper has 5 Secti 20 Multiple Choi 5 Short Answer-I 6 Short Answer-I 4 Long Answer (1 3 Case Based into the sach respectivel are compulsory, as been provided.	ons A, B, C, D and E ce Questions (MCQs) carrying (SA-I) type questions carrying I (SA-II) type questions carrying 5 n carrying 5 n carted units of assessment (4 m y. However, an internal choice in An internal choice has been pro- uired. Take $\pi = 22/7$ wherever r	2 marks each. og 3 marks each. narks each. arks each) with sub-par 2 Qs of 2 marks, 2 Qs o ovided in the 2 marks qu	f 3 marks and 2
			SECTION A		
0.000		Section	A consists of 20 questions of	1 mark each.	
201	$\tan 2A = 2$ (a) 30°	tanA is true when (b) 60°	Carlos and the solution of a state of a	(d) 0°	[1
2.		bid of the triangle espectively are: (b) 3, 1	formed by (3,-5), (-7, 3) and ((c) 2, 1	10, -b) is at (a,-1), then (d) 1, 2	the values [1
3.			he line $3x + 7y = 12$ and the y a		[1
4.	If 5tanβ-4	= 0, then value of	$f \frac{5sin\beta - 4cos\beta}{5sin\beta + 4cos\beta}$ is.		[1
	(a) 5/3	(b) 5/6	(c) 0	(d) 1/6	
5.	The greate minutes is. (a) 17 m/m		at which a man can walk 52 n n/min (c) 23 m/min	(d) 13 m/min	number of [1
6.	1 1 2 2 1 2 2 2 3 2 2 3 2 5 6 5 6 5 7	v equal is:	the and an equilateral triangle with $\overline{3}$ (c) $\sqrt{3}$:π		are [1]
7.	If the dista is : (a) -27	ance between poin (b) 27	ts P (x, 2) and Q (3, -6) is 10 u (c) 18	nits, then the product of (d)-18	
8.		ht of a vertical pol on of the sun at the (b) 60°		adow on the ground, the (d) 75°	n the angle [1]
9.	∆ABC is	s such that AB=	em, BC=2cm and CA=2.5cm of △DEF is:	 △DEF is similar to (d) 30cm 	△ABC, If [1]
10			the equation $(x-1)^2 + (x-2)^2 + ($	-3) ² =0 is: (d) no real roots	[1]

()	cube. Then le a) 4√3 cm				er cube form c) 12√3 cm		$\sqrt{3}$ cm		
2.	The value of (a) -6		$\frac{1}{2x, x + 1}$		+ 2 are the		cutive term	s of an A.P.	is: [
3.	In figure AD,		BC are tany	gents to the	circle at D,	E and F resp	ectively, th	en:	1
	(a) AD=AB+ (c) 3AD=AB	+BC+CA			=AB+BC+C =AB+BC+C				
4.	Consider the Class	data : 30-50	50-70	70-90	90-110	110-130	130-150	150-170	[1]
	Frequency	5	6	13	20	14	7	5	
15.	class is. (a) 0	(t earts and 4 ck card fro	o) 19 cards of s	(pades are n aining pack	c) 20 nissing from	(d) a pack of 52	38	t of the moda	
16.	The sum of (a) 2n		even natur o) n ²		is: c) n ² + n	(d)	n ² - 1		[1]
			O and N	touch anoh	other at point	Danahaum		e. O, P and N	[1]
17.	Two circles w are collinear. is a tangent to center N?	The radius	s of the circ	ele with cen	tre O is twic	e that of the	circle with a	centre N. OX	
17.	are collinear. is a tangent t	The radius o the circl	s of the circ	tre N, and	tre O is twic	what of the What is the	circle with a	centre N. OX	

Cho	ose the correct option from the following:	1
Ass	ertion: Total surface area of the toy top (lattu) is the sum of the curved surface area of the	1.
hen	nisphere and the curved surface area of the cone.	1
	ason: The toy top (lattu) is obtained by fixing the plane surfaces of the hemisphere and cone	
	ether.	1
(a)	Both, A and R, are true and R is the correct explanation of A	
(b)	Both, A and R, are true but R is not the correct explanation of A	
(c)	A is true but R is false	
) A is false but R is true	
	hoose the correct option from the following:	[1]
A	ssertion: The quadratic polynomial with $1/2$ and $1/3$ as its zeroes is $6x^2 - 5x + 1$.	
	eason: Quadratic polynomial having α and β as zeroes are given by $f(x)=k\{x^2-(\alpha + \beta)x+\alpha\beta\}$.	
1000	here k is a non-zero constant	
1.1	a) Both, A and R, are true and R is the correct explanation of A	
1 2	b) Both, A and R, are true but R is not the correct explanation of A	
1 3	c) A is true but R is false	
((d) A is false but R is true	
- MCS	SECTION B	
. 1	Section B consists of 5 questions of 2 marks each.	[2]
1.	Find the perimeter of the sector of a circle whose radius is 7cm and angle of sector is 45°.	[2]
	OR A chord of a circle of radius 7cm subtends an angle 90° at the center. Find the area of the	
	A chord of a circle of radius /cm subtends an angle 90° at the center. Find the area of the corresponding segment of the circle.	
		141
22.	Find the smallest natural number which when divided by 10, 50, 15 leaves a remainder of 5 in	[2]
	ABCD is a trapezium in which AB is parallel to DC. P and Q	[2]
23.	ABCD is a trapezium in which AB is parallel to DC. P and Q are points on sides AD and BC such that PQ is parallel to AB. If	[4]
	PD=9cm, AP=15cm, and QC=30 cm, find BC.	
	t G t	
	Sem Joen J	
	D c	
24.	Used the volta of $S(em^{*})(r) + cos^{*}(r) + 3(cos^{*}+r)$	[2]
	$\frac{\sin^2 30^0 + \cos^2 45^0}{OR}$	
	In a $\triangle ABC$, if $\angle B = 90^\circ$, BC = 5 cm, AC - AB = 1 cm, then Determine the value of cos C.	1 8
25.		[2]
-	In figure, AB is diameter of a circle centered at O. BC is tangent	
	to the circle at B. If OP bisects the chord AD and $\angle AOP = 60^{\circ}$,	
1	then, find ∠C.	- 1
	X°	
192	8 C	_
	SECTION C Section C consists of 6 questions of 3 marks each	-
2	Section C consists of 6 questions of 3 marks each.	[3]
		[3]

Pro	we that $sin^2\theta$	$+\cos^2\theta$	=1 and u	ising this	identity					1
Pro	ove that: $\frac{1+\cos}{\sin\theta}$	$\theta - sin^2 \theta$	=cot0							
Dr	aw the graph	$1+\cos\theta$) of the fi	allowing	pair of li	incar equa	tions 2x-	3v+6=0 ar	nd 4x-y-8	=0. Determin	ne f
the	e coordinates	of the ve	ertices of	the trians	ele formed	by these	lines and	the y-axis,	and shade the	he
1.	angular regior		Lucco or	and analy		<u>.</u>				
un	angutat region	h.			OR					
D	etermine the	values of	f a and b	for which	h the follo	owing syst	em of line	ar equatio	ns has infini	te
	umber of solut						4			
23	x - 3y = 7; (a - 3)	b)x - (a	+b-3)y	= 4a+b				1 . 12 . 0/	0 16 AD - 2	2 12
	n the given fig						D, in which	$\sin ZB = 90$	$F, \Pi AD = 2$	3 [3
e	m, AB =29cm	and DS	= 5cm. F	and the ra	idius r of t	he circle.				
0			1			1				
	•									1
						\leq	5			
				(e=	1					
1					°{(₀					
1	11 a 22				s		- 2			1
					1		6			
1			10	10	F	p				1
										1
					OR					
	Prove that one	osite side	esofaci	uadrilatera	OR d circumse	ribing a cit	rcle subten	d supplem	entary angles	
1.	Prove that opp			ıadrilatera	0.000	ribing a cit	rcle subten	d supplem	entary angles	
1	the centre of th	ne circle.			d circumsc		rcle subten	d supplem	entary angles	[3]
1	방법한 전화되는 것 안정하는 것을 했다.	ne circle.			d circumsc		rcle subten	d supplem	entary angles	
1	the centre of th	ne circle.			d circumsc		rcle subten	d supplem	entary angles	
1	the centre of the Find the value	e circle. of p fro	m the fol	lowing da	al circumse ata, if its mo 30-40 2	ean is 33. 40-50 p			1	
1	the centre of the Find the value	of p fro 0-10 7	m the fol 10-20 4	lowing da 20-30 8	al circumse uta, if its m 30-40 2 SECTIO	ean is 33. 40-50 P	50-60 2	60-70 4	70-80	
1.	the centre of the Find the value Class Frequency	of p fro 0-10 7	m the fol 10-20 4 Section	lowing da 20-30 8 D consists	ata, if its mo 30-40 2 SECTION 5 of 4 ques	ean is 33. 40-50 p N D tions of 5	50-60 2 marks eac	60-70 4 h.	70-80 2	[3]
32.	the centre of the Find the value Class Frequency A solid toy is	of p fro 0-10 7	m the fol 10-20 4 Section I	20-30 8 D consists emisphere	al circumse ata, if its mo 30-40 2 SECTIO s of 4 ques e surmount	ean is 33. 40-50 P N D tions of 5 p ed by a rig	50-60 2 marks eac	60-70 4 h. cone of th	70-80 2 e same base	
32.	the centre of the Find the value Class Frequency	of p fro 0-10 7 in the for	m the fol 10-20 4 Section I rm of a h misphere.	10wing da 20-30 8 D consists emisphere If the rad	al circumse ata, if its mo 30-40 2 SECTION s of 4 ques e surmount lius of base	ean is 33. 40-50 P N D tions of 5 i ed by a rig e of the cor	50-60 2 marks eac tht circular ne is 21cm	60-70 4 h. cone of th and its vol	70-80 2 e same base ume is ¾ of	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of	of p fro 0-10 7 in the for	m the fol 10-20 4 Section I rm of a h misphere.	10wing da 20-30 8 D consists emisphere If the rad	al circumse ata, if its mo 30-40 2 SECTION S of 4 ques e surmount lius of base the height	ean is 33. 40-50 P N D tions of 5 i ed by a rig e of the cor	50-60 2 marks eac tht circular ne is 21cm	60-70 4 h. cone of th and its vol	70-80 2 e same base ume is ¾ of	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of	of p fro 0-10 7 in the for	m the fol 10-20 4 Section I rm of a h misphere.	10wing da 20-30 8 D consists emisphere If the rad	al circumse ata, if its mo 30-40 2 SECTION s of 4 ques e surmount lius of base	ean is 33. 40-50 P N D tions of 5 i ed by a rig e of the cor	50-60 2 marks eac tht circular ne is 21cm	60-70 4 h. cone of th and its vol	70-80 2 e same base ume is ¾ of	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π=22/7] Raghay made	a bird-be	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. (20-30 8 D consists emisphere If the rad Calculate	al circumse ata, if its mo 30-40 2 SECTION 5 of 4 ques 5 of 4 ques 6 surmount lius of base the height OR an the shap	ean is 33. 40-50 P N D tions of 5 ed by a rig e of the con of the con	50-60 2 marks eac th circular ne is 21 cm e and the s	60-70 4 h. cone of th and its vol surface area	70-80 2 e same base ume is 3/3 of a of the toy.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π=22/7] Raghav made depression at of	a bird-ba	m the fol 10-20 4 Section 1 rm of a h misphere. (ath for hi The heig	20-30 8 D consists emisphere If the rad Calculate s garden i	al circumse ta, if its ma 30-40 2 SECTION s of 4 ques e surmount lius of base the height OR an the shap cylinder is b	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com of the com e of a hollo 1.45 m and	50-60 2 marks eac tht circular ne is 21 cm e and the s ow cylinde its radius i	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F	70-80 2 e same base ume is ¾ of a of the toy.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π=22/7] Raghav made depression at of surface area of	a bird-ba	m the fol 10-20 4 Section 1 rm of a h misphere. (ath for hi The heig	20-30 8 D consists emisphere If the rad Calculate s garden i	al circumse ta, if its ma 30-40 2 SECTION s of 4 ques e surmount lius of base the height OR an the shap cylinder is b	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com of the com e of a hollo 1.45 m and	50-60 2 marks eac tht circular ne is 21 cm e and the s ow cylinde its radius i	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F	70-80 2 e same base ume is ¾ of a of the toy.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π =22/7] Raghav made depression at of surface area of (Take π = 22/7)	a bird-ba one end.	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. 0 ath for hi The heig -bath in s	20-30 8 D consists emisphere If the rad Calculate s garden i ht of the c sq.m. and	al circumse ata, if its mo 30-40 2 SECTION S of 4 ques e surmount lius of base the height OR an the shap cylinder is has also find the	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com of the com e of a hollo 1.45 m and te volume of	50-60 2 marks eac tht circular ne is 21 cm e and the s ow cylinde its radius i of the vesse	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F al containin	70-80 2 e same base ume is ¾ of a of the toy. emispherical ind the total g the water.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π =22/7] Raghav made depression at of surface area of (Take π = 22/7) A rectangula	a bird-ba one end. f the bird	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. (ath for hi The heig -bath in s 16m long	20-30 8 D consists emisphere If the rad Calculate s garden i ht of the c sq.m. and	al circumse ta, if its ma 30-40 2 SECTION s of 4 quest the height OR in the shap cylinder is has also find the wide. The	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com of the com e of a hollo 1.45 m and te volume of	50-60 2 marks eac tht circular ne is 21 cm e and the s ow cylinde its radius i of the vesse	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F al containin	70-80 2 e same base ume is ¾ of a of the toy.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π =22/7] Raghav made depression at of surface area of (Take π = 22/7)	a bird-ba one end. f the bird	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. (ath for hi The heig -bath in s 16m long	20-30 8 D consists emisphere If the rad Calculate s garden i ht of the c sq.m. and	al circumse ata, if its mo- 30-40 2 SECTION s of 4 quest control base the height OR also find the wide. Them he path.	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com of the com e of a hollo 1.45 m and te volume of	50-60 2 marks eac tht circular ne is 21 cm e and the s ow cylinde its radius i of the vesse	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F al containin	70-80 2 e same base ume is ¾ of a of the toy. emispherical ind the total g the water.	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π =22/7] Raghav made depression at of surface area of (Take π = 22/7) A rectangula an area of 12	a bird-ba one end. f the bird f the bird f the bird f the bird f the bird	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. (1) ath for hi The heig bath in s 16m long Find the v	20-30 8 D consists emisphere If the rad Calculate s garden i ht of the c sq.m. and g and 10m width of th	al circumse ata, if its mo 30-40 2 SECTION s of 4 ques controls of base the height OR an the shap cylinder is halso find the wide. The base of the or the path. OR	ean is 33. 40-50 P N D tions of 5 m ed by a rig e of the com of the com e of a holle 1.45 m and the volume of re is a path	50-60 2 marks eac the circular ne is 21 cm e and the s ow cylinde its radius i of the vesse of equal w	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F el containin	70-80 2 e same base tume is ¾ of a of the toy. emispherical ind the total g the water. und it having	[3]
32.	the centre of the Find the value Class Frequency A solid toy is radius as that of the volume of [use π =22/7] Raghav made depression at of surface area of (Take π = 22/7 A rectangula an area of 12 Executed to the trade	a bird-ba one end. f the bird f the bird f the bird f the bird f the bird f the bird	m the fol 10-20 4 Section 1 rm of a h misphere. isphere. ath for hi The heig bath in s 16m long Find the y are the ro	20-30 8 D consists emisphere If the rad Calculate s garden i ht of the c sq.m. and g and 10m width of the bots of the	al circumse ata, if its mo- 30-40 2 SECTION s of 4 questions e surmount lius of base the height OR also find the wide. The ne path. OR quadratic of triangle A	ean is 33. 40-50 P N D tions of 5 m ed by a rige of the con- of the con- of the con- e of a hollo 1.45 m and to volume of re is a path equation x ² BC are res	50-60 2 marks eac the circular ne is 21 cm e and the s ow cylinde its radius i of equal w -2x(1+3m)	60-70 4 h. cone of th and its vol surface area r with a he is 30 cm. F el containin idth all aro	70-80 2 e same base ume is ¾ of a of the toy. emispherical ind the total g the water. und it having	[3]

	Marks	Number of students	
	Less than 10	3	
	Less than 20	8	
	Less than 30	20	
	Less than 40	40	
	Less than 50	80	
	Less than 60	85	
	Less than 70	90	
	Less than 80	100	
		SECTION E nsists of 3 questions of 4 marks ea	
	(b) Find the distance between H(-4, (c) What are the coordinates of a po- divides the line segment joining the E(-4,7) and G(4,2) in the ratio 2:3' OR Find the ratio in which x axis divid segment joining the points I (2,6) and A farmer has a triangular piece of the point of the point of the point of the point of the piece of	es the line nd Q(4,-2)	such that there are 20
	 plants in 1st row, 19 plants in the n (a) In the above situation, does the yes, then find the common diff (b) How many plants does the farm (c) If he wants to increase two models in the farmer changes the arrangen in the next row, 16 plants in the reformant plants plants in the reformant plants in the result of the site of the	ext row, 18 plants in the row next to e arrangement of plants make an ari erence. ner grow in the middle row? ore rows then how many more plants OR nent of plants and grows 20 plants in ow next to it and so on. Find the nu	it and so on. thmetic progression. If does he need? the first row, 18 plants imber of rows required
38.	 Saheb standing on a horizontal pl flying at a distance of 200 m elevation of 30°. Abhav standing 50m high building, finds the angl the same bird to be 45°. Saheb at the opposite sides of the bird. (a) Draw a well labeled diagram. (b) Find the height at which the bird. from the ground. 	from him at an on the roof of a e of elevation of ad Abhav are on	Авнач