

THE INDIAN SCHOOL PRE-BOARD EXAMINATION (2023-24) MATHEMATICS (041)

SET-B

Time allowed: 3 hours

Maximum Marks: 80

No. of printed pages: 08

General instructions:

- This question paper consists of 38 questions divided into 5 sections A, B, C, D and E. (i)
- Section A comprises 20 questions carrying 1 mark each including Multiple Choice questions, (ii) Assertion and Reasoning based questions.
- Section B comprises 5 questions carrying 2 marks each. (iii)
- Section C comprises 6 questions carrying 3 marks each. (iv)
- Section D comprises 4 questions carrying 5 marks each. (v)
- Section E comprises 3 case study-based questions of 4 marks each. (vi)
- All questions are compulsory. However internal choices have been provided in some of the (vii) questions.
- Draw neat figures wherever required. (viii)

O No		Ou	estion		Marks			
Q No.				CT CNI 3 HCE	1			
1	The LCM of two numbers is 9 times their HCF. If the sum of LCM and HCF is 500, then the HCF of two numbers is							
	(a) 10	(b) 90	(c) 50	(d) 45				
2	If $\sin\theta + \cos\theta =$	$= \sqrt{2}\cos\theta, (\theta \neq 90)$	0°), then the valu	ie of tan θ is	1			
	(a) $\sqrt{2} - 1$	(b) $\sqrt{2} + 1$	(c) √2	$(d) -\sqrt{2}$				
3	If a 30 m long la	dder is placed agai of the wall, then th	nst a 15 m high e elevation of th	wall such that it just e wall is equal to	1			
	(a) 45°	(b) 30°	(c) 60°	(d) 90°				
4	(c) co							
	(a) $\frac{1}{8}$	(b) $\frac{6}{50}$	$(c)\frac{5}{50}$	$(d)\frac{5}{48}$				

	The 4th term from	the end of the AI	-11, -8, -5,	, 49 is	1
		(b) 40	(c) 43	(d) 58	
	(a) 37			nd (5, 6) in the ratio	1
1	The x-axis divides				
	(a) 1:2	(b) 2:1	(c) 2:5	(d) 5:2	1
7	In the figure give	n below, DE AC	and DF AE. Which	of the following is	
	equal to BF.	A A			
		FEE	C		
	$(a) \frac{DF}{AE}$	(b) BE EC	$(c)\frac{BA}{AC}$	$(d)\frac{FE}{EC}$	
8	What number sh the zero of the p		the polynomial x ² -	+7x - 35 so that 3 is	1
	(a) -35	(b) 7	(c) -5	(d) 5	
9	erra	2 2 6 6 7 1		-thansinto A (I E)	4
	and B (4, 6) cuts		line segment joinin	g the points A (1, 5)	1
				(d) (13, 0)	1
10	(a) (0, 13) If the angle of de	(b) (0, -13) epression of a car per is 30°, then the	(c) (0, 12) parked on the road	(d) (13, 0)	1
	(a) (0, 13) If the angle of do 150 m high tow	(b) (0, -13) epression of a car per is 30°, then the	(c) (0, 12) parked on the road	(d) (13, 0) from the top of a	1
	and B (4, 6) cuts (a) (0, 13) If the angle of de 150 m high tower (in metre) (a) 50√3 A girl calculates	the y-axis at (b) $(0, -13)$ epression of a carper is 30° , then the es) is (b) $150\sqrt{3}$ that the probability	(c) (0, 12) parked on the road distance of the car formula (c) 150√2 ty of her winning the content of the car formula (c) 150√2	(d) (13, 0) from the top of a from the base of the (d) 75	1
10	and B (4, 6) cuts (a) (0, 13) If the angle of de 150 m high tower (in metre) (a) 50√3 A girl calculates	the y-axis at (b) $(0, -13)$ epression of a carper is 30° , then the es) is (b) $150\sqrt{3}$ that the probability	(c) (0, 12) parked on the road distance of the car formula (c) 150√2 ty of her winning the content of the car formula (c) 150√2	(d) (13, 0) from the top of a from the base of the (d) 75 ne first prize in a	1
10	(a) (0, 13) If the angle of do 150 m high tow tower (in metre) (a) 50√3 A girl calculates lottery as 0.08. If the radius of a	the y-axis at (b) $(0, -13)$ epression of a carper is 30° , then the es) is (b) $150\sqrt{3}$ that the probability of 6000 tickets are (b) 240	(c) (0, 12) parked on the road distance of the car for the car fo	(d) (13, 0) from the top of a from the base of the (d) 75 ne first prize in a kets has she bought?	1
10	(a) (0, 13) If the angle of do 150 m high tow tower (in metre) (a) 50√3 A girl calculates lottery as 0.08. If the radius of a	(b) (0, −13) epression of a carper is 30°, then the es) is (b) 150√3 that the probability of 6000 tickets are (b) 240 wheel is 0.25 m, to	(c) (0, 12) parked on the road distance of the car for the car fo	(d) (13, 0) from the top of a from the base of the (d) 75 ne first prize in a kets has she bought? (d) 750 revolutions it will	1
10	and B (4, 6) cuts (a) (0, 13) If the angle of de 150 m high tower (in metre) (a) 50√3 A girl calculates lottery as 0.08. If the radius of a make to travel a (a) 11000 What is the angle of de 150 m and 11000 What is the angle of de 150 m and 11000	(b) (0, −13) epression of a car per is 30°, then the es) is (b) 150√3 that the probability f6000 tickets are (b) 240 wheel is 0.25 m, to distance of 11 km. (b) 7000	(c) (0, 12) parked on the road distance of the car is (c) 150√2 ty of her winning the sold, how many tick (c) 480 hen the number of is	(d) (13, 0) from the top of a from the base of the (d) 75 ne first prize in a kets has she bought? (d) 750 revolutions it will	1

14	In a circle with a radius of 5 cm, a tangent XAY is drawn from one end A of a diameter AB. What is the length of chord CD, which is parallel to XY and positioned 8 cm away from point A?	1
	(a) 4 cm (b) 5 cm (c) 6 cm (d) 8 cm	
15	If $\sum f_i = 18$, $\sum f_i x_i = 2p + 24$, and the mean of the frequency distribution is 2, then the value of p is equal to	1
	(a) 3 (b) 4 (c) 8 (d) 6	
16	If a number x is chosen from the numbers $(1, 2, 3)$ and a number y is selected from the numbers $(1, 4, 9)$, then $P(xy < 9)$ is	1
	(a) $\frac{3}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{9}$ (d) $\frac{5}{9}$	
17	Water from a river, which is 3 m deep and 40 m wide, is flowing at a rate of 2 km/hour. How much water will flow into the sea in 2 minutes?	1
	(a) 800m ³ (b) 4000m ³ (c) 8000m ³ (d) 2000m ³	
	Abhinav created a model for his school project in the shape of a cylinder with radius of 7 cm and a height of 21 cm, with hemisphere surmounted at one end. He wants to cover the entire model with decorative paper. What is the area, in	1
	centimetre square, of paper needed to cover the model? (use $\pi = \frac{22}{7}$)	
	(a) 976m ² (b) 1012m ² (c) 1232m ² (d) 1386m ²	
(a)	the question number 19 and 20, a statement of Assertion (A) is ollowed by a statement of Reason (R). Choose the correct option. Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A). Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A). Assertion (A) is true but reason (R) is false.	

	Assertion(A): The point $(-1, 6)$ divides the line segment joining the points $(-3, 10)$ and $(6, -8)$ in the ratio 2: 7 internally.	
	Reason (R): Three points A, B and C are collinear if $AB + BC = AC$	
20	Assertion(A): $\ln \Delta ABC$, $DE \parallel BC$ such that $AD = (7x - 4)$ cm, $AE = (5x - 2)$ cm, $DB = (3x + 4)$ cm and $EC = 3x$ cm then x equals to 5. Reason (R): If a line is drawn parallel to one side of a triangle to intersect the other two sides at different points, than the other two sides are divided in the same ratio.	1
	SECTION-B (10 Marks)	
Q No.	Question	Marks
21	Find the LCM of $(x^2 - 4)$ and $(x^4 - 16)$.	2
22	There are students in two examination halls, A and B. To equalize the number of students in each hall, 10 students are transferred from A to B. However, if 20 students are sent from B to A, the number of students in A becomes double the number of students in B. Determine the number of students in the two halls. OR	2
	The age of the father is twice the sum of the ages of his two children. After 20 years, his age will be equal to the sum of the ages of his children. Find the age of the father.	
		San L
23	The quadratic polynomial $2x^2-3x+1$ has zeros as α and β . Find a quadratic polynomial whose zeros are 3 α and 3 β .	2
23	The quadratic polynomial 2x ² – 3x + 1 has zeros as α and β. Find a	2
	The quadratic polynomial $2x^2 - 3x + 1$ has zeros as α and β . Find a quadratic polynomial whose zeros are 3 α and 3 β . Find the area of the minor segment of a circle of radius 14 cm, when the	2
	The quadratic polynomial $2x^2-3x+1$ has zeros as α and β . Find a quadratic polynomial whose zeros are 3 α and 3 β . Find the area of the minor segment of a circle of radius 14 cm, when the angle of the corresponding sector is 60°. OR A piece of wire 20 cm long is bent into the form of a circle of radius 14 cm, when the	2
24	The quadratic polynomial $2x^2-3x+1$ has zeros as α and β . Find a quadratic polynomial whose zeros are 3α and 3β . Find the area of the minor segment of a circle of radius 14 cm, when the angle of the corresponding sector is 60° .	2
25	The quadratic polynomial $2x^2-3x+1$ has zeros as α and β . Find a quadratic polynomial whose zeros are 3α and 3β . Find the area of the minor segment of a circle of radius 14 cm, when the angle of the corresponding sector is 60° . OR A piece of wire 20 cm long is bent into the form of an arc of a circle subtending an angle of 60° at its centre. Find the radius of the circle. Two dice are rolled simultaneously, the second α and α arc of a circle.	

Q No.	Question	Mark
ON	SECTION-D (20 Marks)	
	A bird is perched on the top of a tree, which is 80 m high. The angle of elevation of the bird from a point on the ground is 45°. The bird then takes off horizontally from that point and maintains a constant height. After 2 seconds, the angle of elevation of the bird from the point of observation becomes 30°. Find the speed of the bird's flight.	
31	A man standing on the deck of a ship, which is 10 m above water level, observes the angle of elevation of the top of a hill as 60° and the angle of depression of the base of the hill as 30°. Calculate the distance of the hill from the ship and the height of the hill. OR	3
	In what ratio does the point $\left(\frac{24}{11},y\right)$ divide the line segment joining the point P (2, -2) and Q (3, 7)? Also find the value of y.	
30	Point A lies on the line segment XY joining X(6, -6) and Y(-4 , -1) in such a way that $\frac{XA}{XY} = \frac{2}{5}$. If Point A also lies on the line $3x + k(y + 1) = 0$, then find the value of k.	3
29	Solve the following system of linear equations graphically and shade the region between the two lines and the x-axis. $3x + 2y - 11 = 0$ $2x - 3y + 10 = 0$	3
28	inscribed in a quadrilateral ABCD in which $\angle B = 90^{\circ}$. If AD = 17 cm, AB = 20 cm and DS = 3 cm, then find the radius of the circle.	
20	$p^2x^2 + (p^2 - q^2)x - q^2 = 0$ In the given figure, a circle is	3
27	Using a quadratic formula solve the following quadratic equation:	3
26	Prove that $\sqrt{5}$ is an irrational number and hence show that $3 + \sqrt{5}$ is also an irrational number.	3

32	A is a point at a 6 cm. AP and A0 respectively. A 1 PQ, intersecting ΔABC.	Q are ta	ngents RC ie d	lrawn a	t a poir	t R. Ivi	ng on th	e mino	rarc	
	In the given fithe circle and circle from an $\angle PBT = 30^{\circ}$, BA: AT = 2:	rextern prove t	he tang al poin	ent to the	f he	1300	0	A		
33	One-fourth of a root of the her seen on the bahan herd.	d went	to the r	nountai	ns, and	the ren	naining	15 deer	were	5
	A sum of ₹900 there had been less. Find the o	1 20 mo	re peop	le, each	person					
34	(i) If cosθ + s			show th	at cosθ	- sinθ	= √2s	inθ		- 5
34		the follo	owing:		at cosθ	- sin0	= √2s	inθ		5
34	(ii) Evaluate to $\frac{\cos 60^{\circ} - \cos \cos 60^{\circ} + \cot 60^{\circ}}{\sec 60^{\circ} + \cot 60^{\circ}}$ (ii) If $x = asec$ $x^{2} - y^{2} = asec$ (ii) Evaluate to	the follo table + co tan45° - s tan45° - s	wing: sec30° in30° and and b ² . wing:		OR					5
35	(ii) Evaluate to $\frac{\cos 60^{\circ} - \cos \cos 60^{\circ} - \cos 60^{\circ}}{\sec 60^{\circ} + \cot 60^{\circ}}$ (ii) If $x = asec$ $x^{2} - y^{2} = asec$ (ii) Evaluate to $\tan 45^{\circ}$	the follout the follow the follout the follow the fol	wing: and and b ² . wing: $-\frac{3}{2}$	y = ata	OR ane + b	sec0, th	en prov	e that	ety is	5
	(ii) Evaluate to $\frac{\cos 60^{\circ} - \cos \cos 60^{\circ} - \cos \cos 60^{\circ} + \cot 60^{\circ}}{\sec 60^{\circ} + \cot 60^{\circ}}$ (ii) Evaluate to $\frac{\tan 45^{\circ}}{\cos \sec 30^{\circ}}$ +	the follout the follow the follout the follow the fol	wing: and and b ² . wing: $-\frac{3}{2}$	y = ata	OR ane + b	sec0, th	en prov	e that	ety is	5

	Find the value of x. Also, find the median and mean expenditure on milk.	
	SECTION-E (12 Marks)	Marks
No.	Question	4
	Case Study	100
36	An aeroplane departs from an airport and flies north at a speed of 1,200 km/hr. At the same time, another aeroplane departs from the same airport and flies west at a speed of 1,500 km/hr as shown below. After $1\frac{1}{2}$ hr both aeroplanes reach points P and Q respectively.	
	I was	
	W. Parada	
	Based on the above information, answer the following questions.	
	(i) In the given figure, find the area of ΔPOQ .	
	(ii) Find the distance travelled by the aeroplane towards the west after $1\frac{1}{2}$ hr.	
	(ii) Find the distance travelled by the aeroplane towards the north after $1\frac{1}{2}$ hr.	
	(iv) Find the distance between the aeroplanes after $1\frac{1}{2}$ hr.	
37	Case Study	4
	"Makar Sankranti is a joyous and culturally significant occasion. Like numerous other festivals, the kite flying competition also holds historical and cultural importance. The following figure depicts a kite where BCD represents the shape of a quadrant of a circle with a radius of 42 cm. ABCD forms a square, and Δ CEF is an isosceles right-angled triangle with equal sides measuring 7 cm.	

- (i) Find the area of the square.
- (ii) Find the area of quadrant BCD.

OR

- (ii) Find the area of the shaded portion.
- (iii) Find the area of the unshaded portion.

38 Case Study

One day, while going home from school, Rinku observed a carpenter working with wood. He noticed that the carpenter was carving out a cone with the same height and diameter as a cylinder. The cylinder has a height of 24 cm and a base radius of 7 cm. While watching, some questions came to Rinku's mind. Help Rinku to find the answer from the following questions.

- (i) Find the slant height of the conical cavity so formed.
- (ii) Find the curved surface area of the conical cavity so formed.

OR

- (ii) Find the external curved surface area of the cylinder so formed.
- (iii) Find the volume of the conical cavity.