EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. The first term of an A.P. is a, and the sum of the first p terms is zero, show that the sum of its next q terms is $\frac{-a(p+q) q}{p-1}$
Sol. Given that $a_{1}=a$ and $S_{p}=0$
Sum of next q terms of the given A.P. $=\mathrm{S}_{p+q}-\mathrm{S}_{p}$

$$
\begin{aligned}
& \therefore \quad \mathrm{S}_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d] \\
& \text { and } \\
& \mathrm{S}_{p}=\frac{p}{2}[2 a+(p-1) d]=0 \\
& \Rightarrow \quad 2 a+(p-1) d=0 \quad \Rightarrow \quad(p-1) d=-2 a \\
& \Rightarrow \quad d=\frac{-2 a}{p-1} \\
& \text { Sum of next } q \text { terms }=\mathrm{S}_{p+q}-\mathrm{S}_{p}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{p+q}{2}[2 a+(p+q-1) d]-0 \\
& =\frac{p+q}{2}\left[2 a+(p+q-1)\left(\frac{-2 a}{p-1}\right)\right] \\
& =\frac{p+q}{2}\left[2 a+\frac{(p-1)(-2 a)}{p-1}-\frac{2 a q}{p-1}\right] \\
& =\frac{p+q}{2}\left[2 a-2 a-\frac{2 a q}{p-1}\right]=\frac{(p+q)}{2}\left(\frac{-2 a q}{p-1}\right) \\
& =\frac{-a(p+q) q}{p-1}
\end{aligned}
$$

Hence, the required sum $=\frac{-a(p+q) q}{p-1}$
Q2. A man saved ₹ 66000 in 20 years. In each succeeding year after the first year, he saved ₹ 200 more than what he saved in the previous year. How much did he save in the first year?
Sol. Let ₹ x be saved in first year.
Annual increment $=₹ 200$
which forms an A.P.
first term $=a$ and common difference $d=200$

$$
\begin{aligned}
& n=20 \text { years } \\
\therefore & \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \Rightarrow \mathrm{S}_{20}=\frac{20}{2}[2 a+(20-1) 200] \\
\Rightarrow & 66000=10[2 a+3800] \Rightarrow 6600=2 a+3800 \\
\Rightarrow & 2 a=6600-3800 \Rightarrow 2 a=2800 \Rightarrow a=1400
\end{aligned}
$$

Hence, the man saved ₹ 1400 in the first year.
Q3. A man accepts a position with an initial salary of ₹ 5200 per month. It is understood that he will receive an automatic increase of ₹ 320 in the every next month and each month thereafter.
(a) Find his salary for the tenth month;
(b) What is his total earnings during the first year?

Sol. Given that fixed increment in the salary of a man

$$
=₹ 320 \text { each month }
$$

Initial salary $=₹ 5200$ which makes an A.P.
whose first term $(a)=₹ 5200$ and common difference $(d)=₹ 320$
(i) Salary for the tenth month

$$
\begin{aligned}
a_{10} & =a+(n-1) d \\
& =5200+(10-1) \times 320=5200+2880=₹ 8080
\end{aligned}
$$

(ii) Total earning during the first year (12 months)

$$
\begin{aligned}
S_{12} & =\frac{12}{2}[2 \times 5200+(12-1) \times 320] \\
& \quad\left[\because \quad S_{n}=\frac{n}{2}[2 a+(n-1) d]\right] \\
= & 6[10400+3520]=6 \times 13920=₹ 83520
\end{aligned}
$$

Hence, the required amount is $(i) ₹ 8080$ (ii) ₹ 83520 .
Q4. If the p th and q th terms of a G.P. are q and p respectively, then show that its $(p+q)$ th term is $\left(\frac{q^{p}}{p^{q}}\right)^{\frac{1}{p-q}}$
Sol. Let a be the first term and r be the common ratio of a G.P.
Given that $\quad a_{p}=q \quad \Rightarrow \quad a r^{p-1}=q$
and $\quad a_{q}=p \Rightarrow a r^{q-1}=p$
Dividing eq. (i) by eq. (ii) we get,

$$
\begin{aligned}
\frac{a r^{p-1}}{a r^{q-1}} & =\frac{q}{p} \quad \Rightarrow \quad \frac{r^{p-1}}{r^{q-1}}=\frac{q}{p_{1}} \\
\Rightarrow \quad r^{p-q} & =\frac{q}{p} \quad \Rightarrow \quad r=\left(\frac{q}{p}\right)^{\frac{q-q}{p-}}
\end{aligned}
$$

putting the value of r in eq. (i), we get

$$
\begin{array}{rlrl}
a\left[\frac{q}{p}\right]^{\frac{1}{p-q} \times p-1} & =q \\
a\left[\frac{q}{p}\right]^{\frac{p-1}{p-q}} & =q \\
\therefore & a & =q \cdot\left[\frac{p}{q}\right]^{\frac{p-1}{p-q}} \\
\text { Now } \quad \mathrm{T}_{p+q}=a r^{p+q-1} & =q\left[\frac{p}{q}\right]^{\frac{p-1}{p-q}}\left[\frac{q}{p}\right]^{\frac{1}{p-q}(p+q-1)}
\end{array}
$$

$$
\begin{aligned}
& =q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot\left(\frac{q}{p}\right)^{\frac{p+q-1}{p-q}}=q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot\left(\frac{p}{q}\right)^{\frac{-(p+q-1)}{p-q}} \\
& =q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}-\frac{p+q-1}{p-q}}=q\left(\frac{p}{q}\right)^{\frac{p-1-p-q+1}{p-q}}
\end{aligned}
$$

$$
=q\left(\frac{p}{q}\right)^{\frac{-q}{p-q}}=q\left(\frac{q}{p}\right)^{\frac{q}{p-q}}=\frac{q^{\frac{q}{p-q}+1}}{p^{\frac{q}{p-q}}}
$$

$$
=\frac{q^{\frac{p}{p-q}}}{p^{\frac{q}{p-q}}}=\left[\frac{q^{p}}{p^{q}}\right]^{\frac{1}{p-q}}
$$

Hence, the required term $=\left[\frac{q^{p}}{p^{q}}\right]^{\frac{1}{p-q}}$.
Q5. A Carpenter was hired to build 192 window frames. The first day, he made five frames and each day, thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
Sol. Here, first term $a=5$ and the common difference $d=2$ let the carpenter will take n days to finish the job

$$
\begin{aligned}
\mathrm{S}_{n} & =192 \\
\mathrm{~S}_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
192 & =\frac{n}{2}[2 \times 5+(n-1) 2] \\
\Rightarrow \quad 192 \times 2 & =n[10+2 n-2] \Rightarrow 384=n(2 n+8) \\
\Rightarrow \quad 384 & =2 n^{2}+8 n \Rightarrow 2 n^{2}+8 n-384=0
\end{aligned}
$$

$$
\begin{array}{lrlrl}
\Rightarrow & n^{2}+4 n-192 & =0 \quad & \Rightarrow & n^{2}+16 n-12 n-192=0 \\
\Rightarrow & n(n+16)-12(n+16) & =0 & \Rightarrow & (n-12)(n+16)=0 \\
\Rightarrow & n & =12 & & {[\because \quad n \neq-16]}
\end{array}
$$

Hence, the required number of days $=12$.
Q6. We know the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of a polygons with $3,4,5,6, \ldots$ sides form an arithmetic progression. Find the sum of the interior angles for a 21 sides polygon.
Sol. Since, the sum of all interior angles of a polygon of n sides

$$
=(2 n-4) \times 90^{\circ}
$$

\therefore Sum of interior angles of a polygon of sides 3

$$
=(2 \times 3-4) \times 90^{\circ}=180^{\circ}
$$

Sum of interior angles of a polygon of sides 4

$$
=(2 \times 4-4) \times 90^{\circ}=360^{\circ}
$$

Similarly, the sum of interior angles of the polygon of sides, $5,6,7 \ldots$ are $540^{\circ}, 720^{\circ}, 900^{\circ} \ldots$
Therefore, the series will be $180^{\circ}, 360^{\circ}, 540^{\circ}, 720^{\circ}, 900^{\circ} \ldots$ which is A.P.
Here $a=180^{\circ}, d=180^{\circ}$
We have to find the sum of interior angles of a polygon of 21 sides i.e. 19th term

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
a_{19} & =180^{\circ}+(19-1) 180^{\circ}=180^{\circ}+18 \times 180^{\circ} \\
& =180^{\circ}+3240^{\circ}=3420^{\circ}
\end{aligned}
$$

Hence, the required sum of interior angles $=3420^{\circ}$.
Q7. A side of an equilateral triangle is 20 cm long. A second equilateral triangle is inscribed in it by joining the mid points of the sides of the first triangle. The process is continued as shown in the accompanying diagram. Find the perimeter of the sixth inscribed equilateral triangle.
Sol. The side of the first equilateral $\triangle \mathrm{ABC}=20 \mathrm{~cm}$ By joining the mid points of the sides of this triangle, we get the second equilateral triangle which each side $=\frac{20}{2}=10 \mathrm{~cm}$

$[\because$ The line joining the mid-points of two sides of a triangle is $1 / 2$ and parallel to third side of the triangle]

Similarly each side of the third equilateral triangle $=\frac{10}{2}=5 \mathrm{~cm}$ $\therefore \quad$ Perimeter of first triangle $=20 \times 3=60 \mathrm{~cm}$
Perimeter of the second triangle $=10 \times 3=30 \mathrm{~cm}$ and the perimeter of the third triangle $=5 \times 3=15 \mathrm{~cm}$
Therefore, the series will be $60,30,15, \ldots$
which is G.P. in which $a=60$, and $r=\frac{30}{60}=\frac{1}{2}$
Now, we have to find the perimeter of the sixth inscribed equilateral triangle

$$
\begin{aligned}
\therefore \quad a_{6} & =a r^{6-1} \\
& =60 \times\left(\frac{1}{2}\right)^{5}=60 \times \frac{1}{32}=\frac{15}{8} \mathrm{~cm}
\end{aligned}
$$

Hence, the required perimeter $=\frac{15}{8} \mathrm{~cm}$
Q8. In a potato race 20 potatoes are placed in a line at intervals of 4 metres with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he runs in bringing back all the potatoes?
Sol. As per the given information we have the following diagram

Starting point = S
Distance travelled to bring the first potato $=24+24=48 \mathrm{~m}$
Distance travelled to bring the second potato $=2(24+4)=56 \mathrm{~m}$
Distance travelled to bring the third potato $=2(24+4+4)=64 \mathrm{~m}$
Therefore, the series will be $=48,56,64, \ldots$
which an A.P. in which $a=48, d=56-48=8$
We have to find the total distance to bring all the potatoes back, so, $n=20$

$$
\begin{aligned}
\therefore & \mathrm{S}_{n} & =\frac{n}{2}[2 a+(n-1) d] \\
\Rightarrow & \mathrm{S}_{20} & =\frac{20}{2}[2 \times 48+(20-1) 8]=10[96+152] \\
& & =10 \times 248=2480 \mathrm{~m}
\end{aligned}
$$

Hence, the required distance $=2480 \mathrm{~m}$
Q9. In a cricket tournament 16 school teams participated. A sum of $₹ 8000$ is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the
award increases by the same amount for successive finishing place, how much amount will the first place team receive?
Sol. Let the prize amount got by first place team be ₹ a
Since, the prize money increases by the same amount for successive finishing places, therefore the series will be A.P.
$\therefore \quad a_{n}=275, n=16$ and $S_{16}=8000$

$$
\begin{aligned}
a_{n} & =a+(n-1) d \\
275 & =a+(16-1)(-d)
\end{aligned}
$$

$[\because$ Common difference d is $(-)$ as the series is decreasing]
$\Rightarrow \quad 275=a-15 d$
Now $\quad \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]$

$$
\begin{equation*}
S_{16}=\frac{16}{2}[2 a+15(-d)] \tag{ii}
\end{equation*}
$$

$\Rightarrow \quad 8000=8[2 a-15 d] \Rightarrow 2 a-15 d=1000$
Solving eq. (i) and eq. (ii) we get

$$
a=725 \text { and } d=30
$$

Hence, the required award received by first place term $=₹ 725$.
Q10. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ are in A.P. where $a_{i}>0$ for all i.e. show that

$$
\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\cdots \frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{1}}+\sqrt{a_{n}}}
$$

Sol. Given that $a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}$ are in A.P.
$\therefore \quad$ Common difference $d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=\ldots=a_{n}-a_{n-1}$
If $a_{2}-a_{1}=d$ then $\sqrt{a_{2}^{2}}-\sqrt{a_{1}^{2}}=d$
$\Rightarrow \quad\left(\sqrt{a_{2}}-\sqrt{a_{1}}\right)\left(\sqrt{a_{2}}+\sqrt{a_{1}}\right)=d \quad\left[\because \quad a^{2}-b^{2}=(a+b)(a-b)\right]$
$\Rightarrow \quad \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}=\frac{\sqrt{a_{2}}-\sqrt{a_{1}}}{d}$
Similarly

$$
\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}=\frac{\sqrt{a_{3}}-\sqrt{a_{2}}}{d}
$$

$$
\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}=\frac{\sqrt{a_{4}}-\sqrt{a_{3}}}{d}
$$

$$
\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{\sqrt{a_{n}}-\sqrt{a_{n-1}}}{d}
$$

Adding the above terms, we get
$\frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}}+\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}$

$$
\begin{align*}
& =\frac{1}{d}\left[\sqrt{a_{2}}-\sqrt{a_{1}}+\sqrt{a_{3}}-\sqrt{a_{2}}+\sqrt{a_{4}}-\sqrt{a_{3}}+\cdots \sqrt{a_{n}}-\sqrt{a_{n-1}}\right] \\
& =\frac{1}{d}\left[\sqrt{a_{n}}-\sqrt{a_{1}}\right] \tag{i}\\
& \text { Now } \\
& a_{n}=a_{1}+(n-1) d \\
& \Rightarrow \quad a_{n}-a_{1}=(n-1) d \\
& \Rightarrow \quad \sqrt{a_{n}^{2}}-\sqrt{a_{1}^{2}}=(n-1) d \\
& \Rightarrow \quad\left(\sqrt{a_{n}}+\sqrt{a_{1}}\right)\left(\sqrt{a_{n}}-\sqrt{a_{1}}\right)=(n-1) d \\
& \Rightarrow \quad \sqrt{a_{n}}-\sqrt{a_{1}}=\frac{(n-1) d}{\sqrt{a_{n}}+\sqrt{a_{1}}} \\
& \Rightarrow \quad \frac{\sqrt{a_{n}}-\sqrt{a_{1}}}{d}=\frac{n-1}{\sqrt{a_{n}}+\sqrt{a_{1}}} \tag{ii}
\end{align*}
$$

From Eq. (i) and eq. (ii) we get

$$
\begin{aligned}
& \frac{1}{\sqrt{a_{1}}+\sqrt{a_{2}}}+\frac{1}{\sqrt{a_{2}}+\sqrt{a_{3}}}+\frac{1}{\sqrt{a_{3}}+\sqrt{a_{4}}} \\
& +\cdots+\frac{1}{\sqrt{a_{n-1}}+\sqrt{a_{n}}}=\frac{n-1}{\sqrt{a_{n}}+\sqrt{a_{1}}} \quad \text { Hence proved. }
\end{aligned}
$$

Q11. Find the sum of the series

$$
\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\cdots \text { to }(\text { i }) n \text { terms }(\text { ii }) 10 \text { terms }
$$

Sol. Given series

$$
\begin{aligned}
& \Rightarrow \quad\left(3^{3}-2^{3}\right)+\left(5^{3}-4^{3}\right)+\left(7^{3}-6^{3}\right)+\cdots \\
& =\left(3^{3}+5^{3}+7^{3}+\cdots\right)-\left(2^{3}+4^{3}+6^{3}+\cdots\right) \\
& \Rightarrow \quad\left[3^{3}+5^{3}+7^{3}+\ldots(2 n+1)^{3}\right]-\left[2^{3}+4^{3}+6^{3}+\cdots(2 n)^{3}\right] \\
& \therefore \quad \mathrm{T}_{n}=(2 n+1)^{3}-(2 n)^{3} \\
& =(2 n+1-2 n)\left[(2 n+1)^{2}+(2 n+1)(2 n)+(2 n)^{2}\right] \\
& {\left[\because \quad a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)\right]} \\
& =1 \cdot\left[4 n^{2}+1+4 n+4 n^{2}+2 n+4 n^{2}\right] \\
& =12 n^{2}+6 n+1
\end{aligned}
$$

$$
\begin{align*}
\mathrm{S}_{n} & =\sum \mathrm{T}_{n}=12 \sum n^{2}+6 \sum n+n \tag{i}\\
& =12 \cdot \frac{n(n+1)(2 n+1)}{6}+\frac{6 n(n+1)}{2}+n \\
& =2 n(n+1)(2 n+1)+3 n(n+1)+n \\
& =n[2(n+1)(2 n+1)+3(n+1)+1] \\
& =n\left[2\left(2 n^{2}+3 n+1\right)+3 n+3+1\right] \\
& =n\left[4 n^{2}+6 n+2+3 n+4\right]=n\left[4 n^{2}+9 n+6\right] \\
& =4 n^{3}+9 n^{2}+6 n
\end{align*}
$$

(ii) $\quad \mathrm{S}_{10}=4(10)^{3}+9(10)^{2}+6(10)=4 \times 1000+900+60$

$$
=4000+960=4960
$$

Q12. Find the r th term of an A.P. sum of whose first n terms is $2 n+3 n^{2}$
Sol. Given that $S_{n}=2 n+3 n^{2}$

$$
\begin{aligned}
& \Rightarrow \quad S_{1}=2 \times 1+3(1)^{2}=5 \\
& \Rightarrow \quad S_{2}=2 \times 2+3 \times 4=16 \\
& \Rightarrow \quad S_{3}=2 \times 3+3 \times 9=33 \\
& \therefore \quad \mathrm{~S}_{1}=a_{1}=5 \\
& \therefore \quad \quad \quad d=a_{2}-a_{1}=11-5=6 \\
& \text { Now } \\
& \mathrm{T}_{r}=a_{1}+(r-1) d \\
& =5+(r-1) 6=5+6 r-6=6 r-1
\end{aligned}
$$

Hence, the required r th term is $6 r-1$

LONG ANSWER TYPE QUESTIONS

Q13. If A is the arithmetic mean and G_{1}, G_{2} be two geometric means between any two numbers, then prove that $2 A=\frac{G_{1}^{2}}{G_{2}}+\frac{G_{2}^{2}}{G_{1}}$.
Let the two numbers be x and y

$$
\begin{equation*}
\therefore \quad A=\frac{x+y}{2} \tag{i}
\end{equation*}
$$

If G_{1} and G_{2} be the geometric means between x and y then $x, \mathrm{G}_{1}, \mathrm{G}_{2}, y$ are in G.P.

$$
\begin{array}{ll}
\text { then } & y=x r^{4-1} \\
\Rightarrow & y=x r^{3} \Rightarrow \frac{y}{x}=r^{3} \\
\Rightarrow & r=\left(\frac{y}{x}\right)^{1 / 3}
\end{array}
$$

Now

$$
\mathrm{G}_{1}=x r=x\left(\frac{y}{x}\right)^{1 / 3} \quad\left[\because \quad r=\left(\frac{y}{x}\right)^{1 / 3}\right]
$$

and

$$
\mathrm{G}_{2}=x r^{2}=x\left(\frac{y}{x}\right)^{2 / 3}
$$

\therefore from RHS $\frac{\mathrm{G}_{1}^{2}}{\mathrm{G}_{2}}+\frac{\mathrm{G}_{2}^{2}}{\mathrm{G}_{1}}=\frac{x^{2}\left(\frac{y}{x}\right)^{2 / 3}}{x\left(\frac{y}{x}\right)^{2 / 3}}+\frac{x^{2}\left(\frac{y}{x}\right)^{4 / 3}}{x\left(\frac{y}{x}\right)^{1 / 3}}$

$$
=x+x\left(\frac{y}{x}\right)^{\frac{4}{3}-\frac{1}{3}}=x+x\left(\frac{y}{x}\right)
$$

$\therefore \quad$ LHS $=$ RHS Hence proved.

Q14. If $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in A.P., whose common difference is d, show that
$\sec \theta_{1} \cdot \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\cdots+\sec \theta_{n-1} \cdot \sec \theta_{n}=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d}$
Sol. Since $\theta_{1}, \theta_{2}, \theta_{3}, \ldots, \theta_{n}$ are in A.P.

$$
\therefore \quad \theta_{2}-\theta_{1}=\theta_{3}-\theta_{2}=\ldots=\theta_{n}-\theta_{n-1}=d
$$

Now we have to prove that $\sec \theta_{1} \cdot \sec \theta_{2}+\sec \theta_{2} \cdot \sec \theta_{3}+\cdots+\sec \theta_{n-1} \cdot \sec \theta_{n}$

$$
=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d} \text { LHS. }
$$

$$
\Rightarrow \frac{\sin d}{\sin d}\left[\sec \theta_{1} \cdot \sec \theta_{2}+\sec \theta_{2} \sec \theta_{3}+\cdots+\sec \theta_{n-1} \cdot \sec \theta_{n}\right]
$$

$$
\text { Taking only } \frac{\sin d\left[\sec \theta_{1} \cdot \sec \theta_{2}\right]}{\sin d}=\frac{\sin d\left[\frac{1}{\cos \theta_{1}} \cdot \frac{1}{\cos \theta_{2}}\right]}{\sin d}
$$

$$
\begin{aligned}
& =\frac{\sin \left(\theta_{2}-\theta_{1}\right)}{\sin d} \cdot \frac{1}{\cos \theta_{1} \cos \theta_{2}} \\
& =\frac{1}{\sin d}\left[\frac{\sin \theta_{2} \cos \theta_{1}-\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}\right] \\
& =\frac{1}{\sin d}\left[\frac{\sin \theta_{2} \cos \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}-\frac{\cos \theta_{2} \sin \theta_{1}}{\cos \theta_{1} \cos \theta_{2}}\right] \\
& =\frac{1}{\sin d}\left[\tan \theta_{2}-\tan \theta_{1}\right]
\end{aligned}
$$

Similarly we can solve other terms which will be

$$
\begin{aligned}
& \frac{1}{\sin d} {\left[\tan \theta_{3}-\tan \theta_{2}\right] \text { and } \frac{1}{\sin d}\left[\tan \theta_{4}-\tan \theta_{3}\right] } \\
& \text { Here LHS }=\frac{1}{\sin d}\left[\tan \theta_{2}-\tan \theta_{1}+\tan \theta_{3}-\tan \theta_{2}+\cdots+\right. \\
&\left.\tan \theta_{n}-\tan \theta_{n-1}\right] \\
&=\frac{1}{\sin d}\left[-\tan \theta_{1}+\tan \theta_{n}\right]=\frac{\tan \theta_{n}-\tan \theta_{1}}{\sin d} \text { RHS. }
\end{aligned}
$$

LHS = RHS Hence proved.
Q15. If the sum of p terms of an A.P. is q and q terms is p, show that the sum of $p+q$ terms is $-(p+q)$.
Sol. Let a be the first term and d the common difference of the given A.P.
$\therefore \quad \mathrm{S}_{p}=\frac{p}{2}[2 a+(p-1) d]=q \quad \Rightarrow \quad 2 a+(p-1) d=\frac{2 q}{p}$
and $\quad S_{q}=\frac{q}{2}[2 a+(q-1) d]=p \quad \Rightarrow \quad 2 a+(q-1) d=\frac{2 p}{q}$
Subtracting eq. (ii) from eq. (i) we get

$$
\begin{aligned}
(p-q) d & =\frac{2 q}{p}-\frac{2 p}{q} \Rightarrow(p-q) d=\frac{2\left(q^{2}-p^{2}\right)}{p q} \\
\Rightarrow \quad(p-q) d & =\frac{-2}{p q}\left(p^{2}-q^{2}\right) \\
\Rightarrow \quad(p-q) d & =\frac{-2}{p q}(p+q)(p-q) \quad \Rightarrow \quad d=\frac{-2}{p q}(p+q)
\end{aligned}
$$

Substituting the value of d in eq. (i) we get

$$
\begin{aligned}
& 2 a+(p-1)\left[\frac{-2(p+q)}{p q}\right]=\frac{2 q}{p} \\
\Rightarrow & \quad 2 a=\frac{2 q}{p}+\frac{2(p-1)(p+q)}{p q} \Rightarrow a=\frac{q}{p}+\frac{(p-1)(p+q)}{p q} \\
\Rightarrow & \quad a=\frac{q^{2}+p^{2}+p q-p-q}{p q}
\end{aligned}
$$

Now $\mathrm{S}_{p+q}=\frac{p+q}{2}[2 a+(p+q-1) d]$

$$
\begin{aligned}
& =\frac{p+q}{2}\left[\frac{2 q^{2}+2 p^{2}+2 p q-2 p-2 q}{p q}+\frac{(p+q-1)[-2(p+q)]}{p q}\right] \\
& =\frac{p+q}{2}\left[\frac{-2 p q+2 p-2 p q-2 q^{2}+2 q}{p q}\right]
\end{aligned}
$$

$$
=\frac{p+q}{2}\left[\frac{-2 p q}{p q}\right]=-(p+q) \quad \text { Hence proved. }
$$

Q16. If p th, q th and r th terms of an A.P. and G.P. are both a, b, and c respectively. Show that

$$
a^{b-c} \cdot b^{c-a} \cdot c^{a-b}=1
$$

Sol. Let A and d be the first term and common difference respectively of an A.P. and x and R be the first term and common ratio respectively of the G.P.

$$
\begin{array}{ll}
\therefore & \mathrm{A}+(p-1) d=a \\
\text { and } & \mathrm{A}+(q-1) d=b \\
& \mathrm{~A}+(r-1) d=c \tag{iii}
\end{array}
$$

For G.P., we have

$$
\begin{align*}
& x \mathrm{R}^{p-1}=a \tag{iv}\\
& x \mathrm{R}^{q-1}=b \tag{v}\\
& x \mathrm{R}^{r-1}=c \tag{vi}
\end{align*}
$$

and
Subtracting eq. (ii) from eq. (i) we get
Similarly, $\quad(q-r) d=b-c$
and $\quad(r-p) d=c-a$
Now we have to prove that

$$
\begin{equation*}
a^{b-c} \cdot b^{c-a} \cdot c^{a-b}=1 \tag{ix}
\end{equation*}
$$

L.H.S. $a^{b-c} \cdot b^{c-a} \cdot c^{a-b}$

$$
\begin{aligned}
& =\left[x \mathrm{R}^{p-1}\right]^{(q-r) d} \cdot\left[x \mathrm{R}^{q-1}\right]^{(r-p) d} \cdot\left[x \mathrm{R}^{r-1}\right]^{(p-q) d} \\
& \quad[\text { from }(i),(i i),(i i i),(i v),(v),(v i),(v i i),(v i i i),(i x)] \\
& =x^{(q-r) d} \cdot \mathrm{R}^{(p-1)(q-r) d} \cdot x^{(r-p) d} \cdot \mathrm{R}^{(q-1)(r-p) d} \cdot x^{(p-q) d} \cdot \mathrm{R}^{(r-1)(p-q) d} \\
& =x^{(q-r))+(r-p) d+(p-q) d} \mathrm{R}^{(p-1)(q-r) d+(q-1)(r-p) d+(r-1)(p-q) d} \\
& =x^{(q-r+r-p+p-q) d} \cdot \mathrm{R}^{(p q-p r-q+r+q-p-p q-r+p+p r-q-p+q) d} \\
& =x^{(0) d} \cdot \mathrm{R}^{(0) d}=x^{0} \cdot \mathrm{R}^{0}=1 \quad \text { R.H.S. }
\end{aligned}
$$

L.H.S. $=$ R.H.S. Hence proved.

OBJECTIVE TYPE QUESTIONS

Q17. If the sum of n terms of an A.P. is given by $S_{n}=3 n+2 n^{2}$, then the common difference of the A.P. is
(a) 3
(b) 2
(c) 6
(d) 4

Sol. Given that $\mathrm{S}_{n}=3 n+2 n^{2}$

$$
\begin{aligned}
\mathrm{S}_{1} & =3(1)+2(1)^{2}=5 \\
\mathrm{~S}_{2} & =3(2)+2(4)=14 \\
\mathrm{~S}_{1} & =a_{1}=5 \\
\mathrm{~S}_{2}-\mathrm{S}_{1} & =a_{2}=14-5=9
\end{aligned}
$$

\therefore Common difference $d=a_{2}-a_{1}=9-5=4$
Hence, the correct option is (d).
Q18. The third term of G.P. is 4 . The product of its first 5 terms is
(a) 4^{3}
(b) 4^{4}
(c) 4^{5}
(d) None of these

Sol. Given that $\mathrm{T}_{3}=4$
$\Rightarrow \quad a r^{3-1}=4 \quad\left[\begin{array}{ll}\because & \mathrm{T}_{n}=a r^{n-1}\end{array}\right]$
$\Rightarrow \quad a r^{2}=4$
Product of first 5 terms $=a \cdot a r \cdot a r^{2} \cdot a r^{3} \cdot a r^{4}$

$$
=a^{5} r^{10}=\left(a r^{2}\right)^{5}=(4)^{5}
$$

Hence, the correct option is (c).
Q19. If 9 times the 9 th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is
(a) 0
(b) 22
(c) 220
(d) 198

Sol.

		T_{n}	$=a+(n-1) d$
	\therefore	$\mathrm{~T}_{9}$	$=a+8 d$
and	T_{13}	$=a+12 d$	

As per the given condition

$$
\begin{aligned}
& & 9[a+8 d] & =13[a+12 d] \\
\Rightarrow & & 9 a+72 d & =13 a+156 d \quad \Rightarrow \\
\Rightarrow & & a & =-21 d \\
& \text { Now } & \mathrm{T}_{22} & =a+21 d \quad=-21 d+21 d=0 \quad
\end{aligned}
$$

$$
\text { Hence, the correct option is }(a) \text {. }
$$

Q20. If $x, 2 y, 3 z$ are in A.P., where the distinct numbers x, y, z are in G.P., then the common ratio of the G.P. is
(a) 3
(b) $1 / 3$
(c) 2
(d) $1 / 2$

Sol. Since $x, 2 y, 3 z$ are in A.P.
$\begin{array}{rlrl} & \therefore & 2 y-x & =3 z-2 y \\ \Rightarrow & 4 y & =x+3 z\end{array}$
Now x, y, z are in G.P.
$\therefore \quad$ Common ratio $r=\frac{y}{x}=\frac{z}{y}$
$\therefore \quad y^{2}=x z$
putting the value of x from eq. (i), we get

$$
\begin{array}{rlrl}
& & y^{2} & =(4 y-3 z) z \quad y^{2}=4 y z-3 z^{2} \\
\Rightarrow & 3 z^{2}-4 y z+y^{2} & =0 & \Rightarrow \quad 3 z^{2}-3 y z-y z+y^{2}=0 \\
\Rightarrow & 3 z(z-y)-y(z-y) & =0 \Rightarrow \quad(3 z-y)(z-y)=0 \\
\Rightarrow & & 3 z-y & =0 \quad \text { and } \quad z-y=0 \\
\Rightarrow & & 3 z & =y \text { and } z \neq y \\
& & & {[\because \quad z \text { and } y \text { are distinct numbers] }} \\
\Rightarrow & & \frac{z}{y} & =\frac{1}{3} \Rightarrow r=\frac{1}{3} \quad \text { (from eq. (ii)) }
\end{array}
$$

Hence, the correct option is (b).
Q21. If in an A.P., $\mathrm{S}_{n}=q n^{2}$ and $\mathrm{S}_{m}=q m^{2}$, where S_{r} denotes the sum of r terms of the A.P., then S_{q} equals
(a) $q^{3} / 2$
(b) $m n q$
(c) q^{3}
(d) $(m+n) q^{2}$

Sol. The given series is A.P. whose first term is a and common difference is d

$$
\begin{array}{rlrl}
& \therefore & \mathrm{S}_{n} & =\frac{n}{2}[2 a+(n-1) d]=q n^{2} \\
\Rightarrow & & & =2 a+(n-1) d=2 q n \\
& & \mathrm{~S}_{m} & =\frac{m}{2}[2 a+(m-1) d]=q m^{2} \\
\Rightarrow & 2 a+(m-1) d & =2 q m \tag{ii}
\end{array}
$$

Solving eq. (i) and eq. (ii) we get

$$
\begin{aligned}
& 2 a+(m-1) d=2 q m \\
& \frac{2 a+(n-1) d=}{(-)(-)} \\
& (m-n) d=2 q m-2 q n \\
& (m-n) d=2 q(m-n) \\
& \therefore \quad d=2 q
\end{aligned}
$$

Putting the value of d in eq. (ii) we get

$$
\begin{array}{rlrl}
& & 2 a+(m-1) \cdot 2 q=2 q m \Rightarrow 2 a=2 q m-(m-1) 2 q \\
\therefore & 2 a & =2 q(m-m+1) \Rightarrow 2 a=2 q \quad \Rightarrow \quad a=q \\
& S_{q}= & \frac{q}{2}[2 a+(q-1) d]=\frac{q}{2}[2 q+(q-1) 2 q] \\
& =\frac{q}{2}\left[2 q+2 q^{2}-2 q\right]=\frac{q}{2} \times 2 q^{2}=q^{3}
\end{array}
$$

Hence, the correct option is (c).
Q22. Let S_{n} denote the sum of the first n terms of an A.P. if $\mathrm{S}_{2 n}=3 \cdot \mathrm{~S}_{n}$ then $\mathrm{S}_{3 n}: \mathrm{S}_{n}$ is equal to
(a) 4
(b) 6
(c) 8
(d) 10

Sol.

$$
\mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d]
$$

$$
\begin{aligned}
\therefore \quad \mathrm{S}_{2 n} & =\frac{2 n}{2}[2 a+(2 n-1) d] \\
& \mathrm{S}_{3 n}
\end{aligned}=\frac{3 n}{2}[2 a+(3 n-1) d]
$$

As per the condition of the question, we have

$$
\begin{array}{rlrl}
& & \mathrm{S}_{2 n}=3 \cdot \mathrm{~S}_{n} \\
& & \frac{2 n}{2}[2 a+(2 n-1) d] & =3 \cdot \frac{n}{2}[2 a+(n-1) d] \\
\Rightarrow & & 2[2 a+(2 n-1) d] & =3[2 a+(n-1) d] \\
\Rightarrow & & 4 a+(4 n-2) d & =6 a+(3 n-3) d \\
\Rightarrow & & 6 a+(3 n-3) d-4 a-(4 n-2) d & =0 \\
\Rightarrow & 2 a+(3 n-3-4 n+2) d & =0 \Rightarrow 2 a+(-n-1) d=0 \\
\Rightarrow & 2 a-(n+1) d & =0 \Rightarrow 2 a=(n+1) d \tag{i}
\end{array}
$$

Now $S_{3 n}: \mathrm{S}_{n}=\frac{3 n}{2}[2 a+(3 n-1) d]: \frac{n}{2}[2 a+(n-1) d]$

$$
\begin{aligned}
& =\frac{\frac{3 n}{2}[2 a+(3 n-1) d]}{\frac{n}{2}[2 a+(n-1) d]}=\frac{3[2 a+(3 n-1) d]}{2 a+(n-1) d} \\
& =\frac{3[(n+1) d+(3 n-1) d]}{(n+1) d+(n-1) d}
\end{aligned}
$$

$$
=\frac{3 d[n+1+3 n-1]}{d(n+1+n-1)}=\frac{3[4 n]}{2 n}=6
$$

Hence, the correct option is (b).
Q23. The minimum value of $4^{x}+4^{1-x}, x \in \mathrm{R}$ is
(a) 2
(b) 4
(c) 1
(d) 0

Sol. We know that $\mathrm{AM} \geq \mathrm{GM}$

$$
\begin{array}{ll}
\therefore & \frac{4^{x}+4^{1-x}}{2} \geq \sqrt{4^{x} \cdot 4^{1-x}} \Rightarrow 4^{x}+4^{1-x} \geq 2 \sqrt{4^{x+1-x}} \\
\Rightarrow & 4^{x}+4^{1-x} \geq 2 \cdot 2 \Rightarrow \quad 4^{x}+4^{1-x} \geq 4
\end{array}
$$

Hence, the correct option is (b).
Q24. Let S_{n} denotes the sum of the cubes of the first n natural numbers and s_{n} denotes the sum of the first n natural numbers.
Then $\sum_{r=1}^{n} \frac{\mathrm{~S}_{r}}{s_{n}}$
(a) $\frac{n(n+1)(n+2)}{6}$
(b) $\frac{n(n+1)}{2}$
(c) $\frac{n^{2}+3 n+2}{2}$
(d) None of these

Sol. Given that $\sum_{i=1}^{n} \frac{\mathrm{~S}_{r}}{s_{r}}=\frac{\mathrm{S}_{1}}{s_{1}}+\frac{\mathrm{S}_{2}}{s_{2}}+\frac{\mathrm{S}_{3}}{s_{3}}+\cdots+\frac{\mathrm{S}_{n}}{s_{n}}$
Let T_{n} be the nth term of the above series

$$
\therefore \quad \mathrm{T}_{n}=\frac{\mathrm{S}_{n}}{s_{n}}=\frac{\left[\frac{n(n+1)}{2}\right]^{2}}{\frac{n(n+1)}{2}}=\frac{n(n+1)}{2}=\frac{n^{2}+n}{2}
$$

Now sum of the given series

$$
\begin{aligned}
\sum \mathrm{T}_{n} & =\frac{1}{2} \sum\left[n^{2}+n\right]=\frac{1}{2}\left[\sum n^{2}+\sum n\right] \\
& =\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}\right] \\
& =\frac{1}{2} \cdot \frac{n(n+1)}{2}\left[\frac{2 n+1}{3}+1\right]=\frac{n(n+1)}{4}\left[\frac{2 n+1+3}{3}\right] \\
& =\frac{n(n+1)}{4} \cdot \frac{(2 n+4)}{3}=\frac{n(n+1)(n+2)}{6}
\end{aligned}
$$

Hence, the correct option is (a).
Q25. If t_{n} denotes the nth term of the series $2+3+6+11+18+\ldots$, then t_{50} is
(a) $49^{2}-1$
(b) 49^{2}
(c) $50^{2}+1$
(d) $49^{2}+2$

Sol. Let $S_{n}=2+3+6+11+18+\cdots+t_{50}$
Using method of difference, we get

$$
\begin{array}{ll}
& \mathrm{S}_{n}=2+3+6+11+18+\cdots+t_{50} \\
\text { and } & \mathrm{S}_{n}=0+2+3+6+11+\cdots+t_{49}+t_{50} \tag{ii}
\end{array}
$$

Subtracting eq. (ii) from eq. (i), we get

$$
\begin{array}{rlrl}
& & 0 & =2+1+3+5+7+\cdots-t_{50} \text { terms } \\
\Rightarrow & t_{50} & =2+(1+3+5+7+\cdots \text { upto } 49 \text { terms }) \\
\Rightarrow & t_{50} & =2+\frac{49}{2}[2 \times 1+(49-1) 2]=2+\frac{49}{2}[2+96] \\
& =2+\frac{49}{2} \times 98=2+49 \times 49=49^{2}+2
\end{array}
$$

Hence, the correct option is (d).
Q26. The length of three unequal edges of a rectangular solid block are in G.P. The volume of the block is $216 \mathrm{~cm}^{3}$ and the total surface area is $252 \mathrm{~cm}^{2}$. The length of the largest edge is
(a) 12 cm
(b) 6 cm
(c) 18 cm
(d) 3 cm

Sol. Let the length, breadth and height of a rectangular block be $\frac{a}{r}, a$ and $a r$. [Since they are is G.P]

$$
\begin{array}{rlrl}
& \therefore & \text { Volume } & =l \times b \times h \\
& 216 & =\frac{a}{r} \times a \times a r \\
& & a^{3} & =216 \Rightarrow a=6
\end{array}
$$

Now total surface area $=2[l b+b h+l h]$

$$
\begin{aligned}
& 252=2\left[\frac{a}{r} \cdot a+a \cdot a r+\frac{a}{r} \cdot a r\right] \Rightarrow 252=2\left[\frac{a^{2}}{r}+a^{2} r+a^{2}\right] \\
\Rightarrow & 252=2 a^{2}\left[\frac{1}{r}+r+1\right] \Rightarrow 252=2 \times(6)^{2}\left[\frac{1+r^{2}+r}{r}\right] \\
\Rightarrow & 252=72\left[\frac{1+r^{2}+r}{r}\right] \Rightarrow \frac{252}{72}=\frac{1+r+r^{2}}{r} \\
\Rightarrow & \frac{7}{2}=\frac{1+r+r^{2}}{r} \Rightarrow 2+2 r+2 r^{2}=7 r \\
\Rightarrow & 2 r^{2}-5 r+2=0 \Rightarrow 2 r^{2}-4 r-r+2=0 \\
\Rightarrow & 2 r(r-2)-1(r-2)=0 \quad \Rightarrow \quad(r-2)(2 r-1)=0 \\
\Rightarrow & r-2=0 \quad \text { and } 2 r-1=0 \\
\therefore & \quad r=2, \frac{1}{2}
\end{aligned}
$$

Therefore, the three edge are:
If $r=2$ then edges are $3,6,12$

If $r=\frac{1}{2}$ then edges are $12,6,3$
So, the length of the longest edge $=12$
Hence, the correct option is (a).

FILL IN THE BLANKS

Q27. If a, b and c are in G.P. then the value of $\frac{a-b}{b-c}$ is equal to
Sol. Since a, b and c are in G.P
$\therefore \quad \frac{b}{a}=\frac{c}{b}=r \quad$ (constant)
$\Rightarrow \quad b=a r$ and $\quad c=b r \quad \Rightarrow \quad c=a r \cdot r=a r^{2}$
So $\quad \frac{a-b}{b-c}=\frac{a-a r}{a r-a r^{2}}=\frac{a(1-r)}{a r(1-r)}=\frac{1}{r}=\frac{a}{b}=\frac{b}{c}$
Hence, the correct value of the filler is $\frac{a}{b}$ or $\frac{b}{c}$
Q28. The sum of terms equidistant from the beginning and end in an A.P is equal to \qquad _.
Sol. Let A.P be $a, a+d, a+2 d, a+3 d, \ldots, a+(n-1) d$
Taking first and last term

$$
a_{1}+a_{n}=a+a+(n-1) d=2 a+(n-1) d
$$

Taking second and second last term

$$
a_{2}+a_{n-1}=(a+d)+[a+(n-2) d]=2 a+(n-1) d=a_{1}+a_{n}
$$

Taking third from the beginning and the third from the end

$$
a_{3}+a_{n-2}=(a+2 d)+[a+(n-3) d]=2 a+(n-1) d=a_{1}+a_{n}
$$

From the above pattern, we observe that the sum of terms equidistant from the beginning and the end in an A.P is equal to the [first term + last term]
Hence, the correct value of the filler is first term + last term.
Q29. The third term of a G.P is 4, the product of first five terms is
Sol. Given

$$
\begin{align*}
\mathrm{T}_{3} & =4 \\
a r^{2} & =4 \tag{i}
\end{align*}
$$

Product of first five terms $=a \cdot a r \cdot a r^{2} \cdot a r^{3} \cdot a r^{4}$

$$
\begin{equation*}
=a^{5} r^{10}=\left(a r^{2}\right)^{5}=(4)^{5} \tag{i}
\end{equation*}
$$

Hence, the correct value of the fillter is $(4)^{5}$.

TRUE/FALSE

Q30. Two sequences can not be in both A.P and G.P together.
Sol. Let us consider a G.P, $a, a r$ and $a r^{2}$
If it is in A.P then $a r-a \neq a r^{2}-a r$
Hence, the given statement is True.

Q31. Every progression is a sequence but the converse i.e., every sequence is also a progression need not necessarily be true.
Sol. Let us consider a sequence of prime numbers $2,3,5,7,11, \ldots$ It is clear that this progression is a sequence but sequence is not a progression because it does not follow a specific pattern. Here, the given statement is True.
Q32. Any term of an A.P (except first) is equal to half the sum of terms which are equidistant from it.
Sol. Let us consider an A.P $a, a+d, a+2 d, \ldots$

$$
\begin{array}{rlrl}
\therefore & & a_{2}+a_{4} & =a+d+a+3 d=2 a+4 d=2 a_{3} \\
\Rightarrow & & a_{3} & =\frac{a_{2}+a_{4}}{2} \\
& & \frac{a_{3}+a_{5}}{2} & =\frac{a+2 d+a+4 d}{2}=\frac{2 a+6 d}{2} \\
\Rightarrow & & =a+3 d=a_{4}
\end{array}
$$

Hence, the given statement is True.
Q33. The sum or difference of two G.P's is again a G.P.
Sol. Let us consider two G.P.'s
and

$$
\begin{aligned}
& a_{1}, a_{1} r_{1}, a_{1} r_{1}^{2}, a_{1} r_{1}^{3} \cdots a_{1} r_{1}^{n-1} \\
& a_{2}, a_{2} r_{2}, a_{2} r_{2}^{2}, a_{2} r_{2}^{3}, \cdots a_{2} r_{2}^{n-1}
\end{aligned}
$$

Now Sum of two G.Ps

$$
\left(a_{1}+a_{2}\right)+\left(a_{1} r_{1}+a_{2} r_{2}\right)+\left(a_{1} r_{1}^{2}+a_{2} r_{2}^{2}\right) \cdots
$$

Now

$$
\begin{aligned}
\frac{T_{2}}{T_{1}} & =\frac{a_{1} r_{1}+a_{2} r_{2}}{a_{1}+a_{2}} \text { and } \frac{T_{3}}{T_{2}}=\frac{a_{1} r_{1}^{2}+a_{2} r_{2}^{2}}{a_{1} r_{1}+a_{2} r_{2}} \\
\frac{a_{1} r_{1}+a_{2} r_{2}}{a_{1}+a_{2}} & \neq \frac{a_{1} r_{1}^{2}+a_{2} r_{2}^{2}}{a_{1} r_{1}+a_{2} r_{2}}
\end{aligned}
$$

Now let us consider the difference G.P's

$$
\begin{aligned}
& \left(a_{1}-a_{2}\right)+\left(a_{1} r_{1}-a_{2} r_{2}\right)+\left(a_{1} r_{1}^{2}-a_{2} r_{2}^{2}\right) \\
& \therefore \quad \frac{T_{2}}{T_{1}}=\frac{a_{1} r_{1}-a_{2} r_{2}}{a_{1}-a_{2}} \text { and } \frac{T_{3}}{T_{2}}=\frac{a_{1} r_{1}^{2}-a_{2} r_{2}^{2}}{a_{1} r_{1}-a_{2} r_{2}} \\
& \text { But } \quad \frac{T_{2}}{T_{1}} \neq \frac{T_{3}}{T_{2}}
\end{aligned}
$$

Hence, the given statement is False.
Q34. If the sum of n terms of a sequence is quadratic expression then it always represents an A.P
Sol. Let

$$
\begin{aligned}
& \mathrm{S}_{n}=a n^{2}+b n+c \\
& \mathrm{~S}_{1}=a+b+c
\end{aligned}
$$

(quadratic expression)

$$
\begin{aligned}
& \therefore \quad a_{1}=a+b+c \\
& \mathrm{~S}_{2}=4 a+2 b+c \\
& a_{2}=\mathrm{S}_{2}-\mathrm{S}_{1}=(4 a+2 b+c)-(a+b+c)=3 a+b \\
& \mathrm{~S}_{3}=9 a+3 b+c \\
& \Rightarrow \quad a_{3}=\mathrm{S}_{3}-\mathrm{S}_{2}=(9 a+3 b+c)-(4 a+2 b+c)=5 a+b \\
& \text { Common difference } d=a_{2}-a_{1}=(3 a+b)-(a+b+c) \\
& =2 a-c \\
& \text { and } \\
& d=a_{3}-a_{2}=(5 a+b)-(3 a+b)=2 a
\end{aligned}
$$

Here, we observe that $a_{2}-a_{1} \neq a_{3}-a_{2}$
So it does not represent an A.P
Hence, the given statement is False.
Q35. Match the questions given under column I with their appropriate answers given under the column II

Column I	Column II
(a) $4,1, \frac{1}{4}, \frac{1}{16}$	(i) A.P
(b) $2,3,5,7$	(ii) Sequence
(c) $13,8,3,-2,-7$	(iii) G.P

Sol. (a) $4,1, \frac{1}{4}, \frac{1}{16}$
Here, $\frac{a_{2}}{a_{1}}=\frac{1}{4}, \frac{a_{3}}{a_{2}}=\frac{1 / 4}{1}=\frac{1}{4}$ and $\frac{a_{4}}{a_{3}}=\frac{1 / 16}{1 / 4}=\frac{1}{4}$
Hence it is G.P
$\therefore \quad(a) \leftrightarrow(i i i)$
(b) 2, 3, 5, 7

$$
\begin{array}{ll}
\text { Here } & \begin{array}{l}
a_{2}-a_{1}=3-2=1 \\
\\
\\
a_{3}-a_{2}=5-3=2 \\
\therefore
\end{array} \\
a_{2}-a_{1} \neq a_{3}-a_{2}
\end{array}
$$

Hence it is not A.P

$$
\begin{aligned}
\frac{a_{2}}{a_{1}} & =\frac{3}{2}, \frac{a_{3}}{a_{2}}=\frac{5}{3} \\
\frac{3}{2} & \neq \frac{5}{3}
\end{aligned}
$$

So,
So it is not G.P
Hence it is sequence
$\therefore \quad(b) \leftrightarrow(i i)$
(c) $13,8,3,-2,-7$

Here $\quad a_{2}-a_{1}=8-13=-5$

So,

$$
\begin{aligned}
& a_{3}-a_{2}=3-8=-5 \\
& a_{2}-a_{1}=a_{3}-a_{2}=-5
\end{aligned}
$$

So, it is an A.P
Hence $(c) \leftrightarrow(i)$
Q36.

Column II

(a) $1^{2}+2^{2}+3^{2}+\cdots+n^{2}$
(i) $\left[\frac{n(n+1)}{2}\right]^{2}$
(b) $1^{3}+2^{3}+3^{3}+\cdots+n^{3}$
(ii) $n(n+1)$
(c) $2+4+6+\cdots+2 n$
(iii) $\frac{n(n+1)(2 n+1)}{6}$
(d) $1+2+3+\cdots+n$
(iv) $\frac{n(n+1)}{2}$

Sol. (a) Let $\mathrm{S}_{n}=1^{2}+2^{2}+3^{2}+\cdots+n^{2}$

$$
\begin{aligned}
\mathrm{K}^{3}-(\mathrm{K}-1)^{3} & =3 \mathrm{~K}^{2}-3 \mathrm{~K}+1 \\
1^{3}-0^{3} & =3(1)^{2}-3(1)+1 \\
2^{3}-1^{3} & =3(2)^{2}-3(2)+1 \\
3^{3}-2^{3} & =3(3)^{2}-3(3)+1
\end{aligned}
$$

For $\mathrm{K}=1$,
For $K=2$,
For $K=3$,
For $\mathrm{K}=n, \quad n^{3}-(n-1)^{3}=3(n)^{2}-3(n)+1$
Adding Column wise, we get

$$
\begin{array}{rlrl}
& & n^{3}-0^{3}= & 3\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right) \\
& & -3(1+2+3+\cdots+n)+n \\
\Rightarrow & & n^{3}= & 3 \cdot \mathrm{~S}_{n}-\frac{3 n(n+1)}{2}+n \\
\Rightarrow & & n^{3}+\frac{3 n(n+1)}{2}-n= & 3 \cdot \mathrm{~S}_{n} \\
\Rightarrow & \frac{2 n^{3}+3 n^{2}+3 n-2 n}{2} & =3 \cdot \mathrm{~S}_{n} \\
\Rightarrow & 6 \cdot \mathrm{~S}_{n} & =2 n^{3}+3 n^{2}+n \\
\Rightarrow & 6 \cdot \mathrm{~S}_{n}= & n\left(2 n^{2}+3 n+1\right) \\
\Rightarrow & 6 \cdot \mathrm{~S}_{n}= & n\left[2 n^{2}+2 n+n+1\right] \\
\Rightarrow & 6 \cdot \mathrm{~S}_{n}=n(n+1)(2 n+1) \\
\Rightarrow & & \mathrm{S}_{n} & =\frac{n(n+1)(2 n+1)}{6}
\end{array}
$$

Here (a) $\leftrightarrow($ iii).
(b) Let $\mathrm{S}_{n}=1^{3}+2^{3}+3^{3}+\cdots+n^{3}$

$$
K^{4}-(K-1)^{4}=4 K^{3}-6 K^{2}+4 K-1
$$

$$
\begin{aligned}
& \text { For } K=1 \quad 1^{4}-0^{4}=4(1)^{3}-6(1)^{2}+4(1)-1 \\
& \text { For } K=2 \quad 2^{4}-1^{4}=4(2)^{3}-6(2)^{2}+4(2)-1 \\
& \text { For } K=3 \quad 3^{4}-2^{4}=4(3)^{3}-6(3)^{2}+4(3)-1 \\
& \text { For } K=n \quad n^{4}-(n-1)^{4}=4(n)^{3}-6\left(n^{2}\right)+4(n)-1 \\
& \text { Adding column wise, we get } \\
& \Rightarrow \quad n^{4}-0^{4}=4\left(1^{3}+2^{3}+3^{3}+\cdots n^{3}\right) \\
& -6\left(1^{2}+2^{2}+3^{2}+\cdots+n^{2}\right) \\
& +4(1+2+3+\ldots n)-n \\
& \Rightarrow \quad n^{4}=4 \cdot S_{n}-\frac{6 n(n+1)(2 n+1)}{6}+\frac{4 n(n+1)}{2}-n \\
& \Rightarrow \quad n^{4}=4 \cdot S_{n}-n(n+1)(2 n+1)+2 n(n+1)-n \\
& \Rightarrow \quad n^{4}+n(n+1)(2 n+1)-2 n(n+1)+n=4 \cdot \mathrm{~S}_{n} \\
& \Rightarrow \quad n\left[n^{3}+(n+1)(2 n+1)-2 n-2+1\right]=4 \cdot S_{n} \\
& \Rightarrow \quad n\left[n^{3}+2 n^{2}+3 n+1-2 n-1\right]=4 \cdot S_{n} \\
& \Rightarrow \quad n\left[n^{3}+2 n^{2}+n\right]=4 \cdot S_{n} \\
& \Rightarrow \quad \frac{n^{2}\left(n^{2}+2 n+1\right)}{4}=\mathrm{S}_{n} \\
& \Rightarrow \quad \frac{n^{2}(n+1)^{2}}{4}=S_{n} \\
& \therefore \\
& S_{n}=\left[\frac{n(n+1)}{2}\right]^{2}
\end{aligned}
$$

Hence $(b) \leftrightarrow(i)$
(c) Let $S_{n}=2+4+6+\ldots+2 n$

$$
\begin{aligned}
& =2(1+2+3+\ldots+n) \\
& =2 \frac{n(n+1)}{2} \\
& =n(n+1)
\end{aligned}
$$

Hence $(c) \leftrightarrow(i i)$
(d) Let $\mathrm{S}_{n}=1+2+3+\cdots+n=\frac{n(n+1)}{2}$

Hence $(d) \leftrightarrow(i v)$

