EXERCISE

SHORT ANSWER TYPE QUESTIONS

- **Q1.** The first term of an A.P. is *a*, and the sum of the first *p* terms is zero, show that the sum of its next *q* terms is $\frac{-a(p+q)q}{n-1}$ **Sol.** Given that $a_1 = a$ and $S_n = 0$ Sum of next *q* terms of the given A.P. = $S_{p+a} - S_n$ $S_{p+q} = \frac{p+q}{2} [2a + (p+q-1)d]$... $S_{p} = \frac{p}{2}[2a + (p-1)d] = 0$ and $2a + (p-1)d = 0 \implies (p-1)d = -2a$ \Rightarrow $d = \frac{-2a}{n-1}$ \Rightarrow Sum of next q terms = $S_{n+a} - S_n$ $= \frac{p+q}{2}[2a+(p+q-1)d]-0$ $= \frac{p+q}{2} \left| 2a + (p+q-1) \left(\frac{-2a}{p-1} \right) \right|$ $= \frac{p+q}{2} \left[2a + \frac{(p-1)(-2a)}{p-1} - \frac{2aq}{p-1} \right]$ $=\frac{p+q}{2}\left[2a-2a-\frac{2aq}{p-1}\right]=\frac{(p+q)}{2}\left(\frac{-2aq}{p-1}\right)$ $=\frac{-a(p+q)q}{p-1}$ p-1Hence, the required sum = $\frac{-a(p+q)q}{p-1}$
- **Q2.** A man saved ₹ 66000 in 20 years. In each succeeding year after the first year, he saved ₹ 200 more than what he saved in the previous year. How much did he save in the first year?
- **Sol.** Let ₹ *x* be saved in first year. Annual increment = ₹ 200

which forms an A.P.

first term = a and common difference d = 200

$$n = 20$$
 years

$$\begin{array}{rcl} \therefore & \mathrm{S}_n = \frac{n}{2} [2a + (n-1)d] & \Rightarrow & \mathrm{S}_{20} = \frac{20}{2} [2a + (20-1)200] \\ \Rightarrow & 66000 = 10 [2a + 3800] & \Rightarrow & 6600 = 2a + 3800 \\ \Rightarrow & 2a = 6600 - 3800 & \Rightarrow & 2a = 2800 & \Rightarrow & a = 1400 \\ \mathrm{Hence, \ the \ man \ saved} \gtrless 1400 \ \mathrm{in \ the \ first \ year.} \end{array}$$

- **Q3.** A man accepts a position with an initial salary of ₹ 5200 per month. It is understood that he will receive an automatic increase of ₹ 320 in the every next month and each month thereafter.
 - (*a*) Find his salary for the tenth month;
 - (b) What is his total earnings during the first year?
- Sol. Given that fixed increment in the salary of a man

= ₹ 320 each month

Initial salary = ₹ 5200 which makes an A.P.

whose first term (*a*) = ₹ 5200 and common difference (*d*) = ₹ 320

(*i*) Salary for the tenth month

$$a_{10} = a + (n-1)d$$

(*ii*) Total earning during the first year (12 months)

$$S_{12} = \frac{12}{2} [2 \times 5200 + (12 - 1) \times 320] \\ \left[\because S_n = \frac{n}{2} [2a + (n - 1)d] \right]$$

= 6[10400 + 3520] = 6 × 13920 = ₹ 83520

Hence, the required amount is (i) ₹ 8080 (ii) ₹ 83520.

Q4. If the *p*th and *q*th terms of a G.P. are *q* and *p* respectively, then

show that its (p+q)th term is $\left(\frac{q^p}{p^q}\right)^{\frac{1}{p-q}}$

Sol. Let *a* be the first term and *r* be the common ratio of a G.P.

Given that $a_p = q \implies ar^{p-1} = q$...(*i*) and $a_q = p \implies ar^{q-1} = p$...(*ii*) Dividing eq. (*i*) by eq. (*ii*) we get,

$$\begin{aligned} &\frac{ar^{p-1}}{ar^{q-1}} = \frac{q}{p} \quad \Rightarrow \quad \frac{r^{p-1}}{r^{q-1}} = \frac{q}{p} \\ \Rightarrow \qquad r^{p-q} = \frac{q}{p} \quad \Rightarrow \quad r = \left(\frac{q}{p}\right)^{p-q} \end{aligned}$$

putting the value of r in eq. (i), we get

$$a\left[\frac{q}{p}\right]^{\frac{1}{p-q}\times p-1} = q$$

$$a\left[\frac{q}{p}\right]^{\frac{p-1}{p-q}} = q$$

$$a = q \cdot \left[\frac{p}{q}\right]^{\frac{p-1}{p-q}} = q$$

$$\therefore \qquad a = q \cdot \left[\frac{p}{q}\right]^{\frac{p-1}{p-q}} \left[\frac{q}{p}\right]^{\frac{p-1}{p-q}} \left[\frac{q}{p}\right]^{\frac{p-1}{p-q}} \left[\frac{q}{p}\right]^{\frac{p-1}{p-q}} \cdot \left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot \left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} = q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} \cdot \left(\frac{p}{q}\right)^{\frac{-(p+q-1)}{p-q}}$$

$$= q\left(\frac{p}{q}\right)^{\frac{p-1}{p-q}} - \frac{p+q-1}{p-q} = q\left(\frac{p}{q}\right)^{\frac{p-1-p-q+1}{p-q}}$$

$$= q\left(\frac{p}{q}\right)^{\frac{p-q}{p-q}} = q\left(\frac{q}{p}\right)^{\frac{q}{p-q}} = \frac{q^{\frac{q}{p-q}+1}}{p^{\frac{q}{p-q}}}$$

$$= \frac{q^{\frac{p}{p-q}}}{p^{\frac{p}{p-q}}} = \left[\frac{q^{p}}{p^{q}}\right]^{\frac{1}{p-q}}.$$
Hence, the required term
$$= \left[\frac{q^{p}}{p^{q}}\right]^{\frac{p-q}{p-q}}.$$

- **Q5.** A Carpenter was hired to build 192 window frames. The first day, he made five frames and each day, thereafter he made two more frames than he made the day before. How many days did it take him to finish the job?
- **Sol.** Here, first term a = 5 and the common difference d = 2 let the carpenter will take n days to finish the job

$$S_{n} = 192$$

$$S_{n} = \frac{n}{2}[2a + (n - 1)d]$$

$$192 = \frac{n}{2}[2 \times 5 + (n - 1)2]$$

$$\Rightarrow 192 \times 2 = n[10 + 2n - 2] \Rightarrow 384 = n(2n + 8)$$

$$384 = 2n^{2} + 8n \Rightarrow 2n^{2} + 8n - 384 = 0$$

 $\Rightarrow n^2 + 4n - 192 = 0 \Rightarrow n^2 + 16n - 12n - 192 = 0$ $\Rightarrow n(n+16) - 12 (n+16) = 0 \Rightarrow (n-12) (n+16) = 0$ $\Rightarrow n = 12 [\because n \neq -16]$

Hence, the required number of days = 12.

- **Q6.** We know the sum of the interior angles of a triangle is 180°. Show that the sums of the interior angles of a polygons with 3, 4, 5, 6, ... sides form an arithmetic progression. Find the sum of the interior angles for a 21 sides polygon.
- **Sol.** Since, the sum of all interior angles of a polygon of *n* sides $= (2n 4) \times 90^{\circ}$
 - \therefore Sum of interior angles of a polygon of sides 3

$$= (2 \times 3 - 4) \times 90^{\circ} = 180^{\circ}$$

Sum of interior angles of a polygon of sides 4 = $(2 \times 4 - 4) \times 90^\circ = 360^\circ$

Similarly, the sum of interior angles of the polygon of sides, 5, 6, 7 ... are 540°, 720°, 900°...

Therefore, the series will be 180° , 360° , 540° , 720° , 900° ... which is A.P.

Here $a = 180^{\circ}$, $d = 180^{\circ}$

We have to find the sum of interior angles of a polygon of 21 sides *i.e.* 19th term

 $\begin{array}{l} a_n = a + (n-1)d \\ a_{19} = 180^\circ + (19-1)180^\circ = 180^\circ + 18 \times 180^\circ \\ = 180^\circ + 3240^\circ = 3420^\circ \end{array}$

Hence, the required sum of interior angles = 3420° .

- **Q7.** A side of an equilateral triangle is 20 cm long. A second equilateral triangle is inscribed in it by joining the mid points of the sides of the first triangle. The process is continued as shown in the accompanying diagram. Find the perimeter of the sixth inscribed equilateral triangle.
- **Sol.** The side of the first equilateral $\triangle ABC = 20$ cm By joining the mid points of the sides of this triangle, we get the second equilateral triangle which each side $=\frac{20}{2}=10$ cm B

[: The line joining the mid-points of two sides of a triangle is 1/2 and parallel to third side of the triangle]

...

Similarly each side of the third equilateral triangle = $\frac{10}{2}$ = 5 cm \therefore Perimeter of first triangle = 20 × 3 = 60 cm Perimeter of the second triangle = 10 × 3 = 30 cm and the perimeter of the third triangle = 5 × 3 = 15 cm Therefore, the series will be 60, 30, 15, ...

which is G.P. in which *a* = 60, and *r* = $\frac{30}{60} = \frac{1}{2}$

Now, we have to find the perimeter of the sixth inscribed equilateral triangle

$$a_6 = ar^{6-1}$$

= $60 \times \left(\frac{1}{2}\right)^5 = 60 \times \frac{1}{32} = \frac{15}{8}$ cm

Hence, the required perimeter = $\frac{15}{8}$ cm

- **Q8.** In a potato race 20 potatoes are placed in a line at intervals of 4 metres with the first potato 24 metres from the starting point. A contestant is required to bring the potatoes back to the starting place one at a time. How far would he runs in bringing back all the potatoes?
- Sol. As per the given information we have the following diagram

Distance travelled to bring the first potato = 24 + 24 = 48 m Distance travelled to bring the second potato = 2(24 + 4) = 56 m Distance travelled to bring the third potato = 2(24 + 4 + 4) = 64 m Therefore, the series will be = 48, 56, 64, ...

which an A.P. in which a = 48, d = 56 - 48 = 8

We have to find the total distance to bring all the potatoes back, so, n = 20

$$S_n = \frac{n}{2} [2a + (n-1)d]$$

$$\Rightarrow \qquad S_{20} = \frac{20}{2} [2 \times 48 + (20-1)8] = 10[96 + 152]$$

$$= 10 \times 248 = 2480 \text{ m}$$
Hence, the required distance = 2480 m

Hence, the required distance = 2480 m

Q9. In a cricket tournament 16 school teams participated. A sum of ₹ 8000 is to be awarded among themselves as prize money. If the last placed team is awarded ₹ 275 in prize money and the

award increases by the same amount for successive finishing place, how much amount will the first place team receive?

Sol. Let the prize amount got by first place team be ₹ *a* Since, the prize money increases by the same amount for successive finishing places, therefore the series will be A.P.

Chapter 9 - Sequence and Series NCERT Exemplar - Class 11

$$= \frac{1}{d} [\sqrt{a_2} - \sqrt{a_1} + \sqrt{a_3} - \sqrt{a_2} + \sqrt{a_4} - \sqrt{a_3} + \dots \sqrt{a_n} - \sqrt{a_{n-1}}] = \frac{1}{d} [\sqrt{a_n} - \sqrt{a_1}] \dots (i) Now $a_n = a_1 + (n-1)d \Rightarrow a_n - a_1 = (n-1)d \Rightarrow \sqrt{a_n^2} - \sqrt{a_1^2} = (n-1)d \Rightarrow (\sqrt{a_n} + \sqrt{a_1}) (\sqrt{a_n} - \sqrt{a_1}) = (n-1)d \Rightarrow \sqrt{a_n} - \sqrt{a_1} = \frac{(n-1)d}{\sqrt{a_n} + \sqrt{a_1}} \Rightarrow \frac{\sqrt{a_n} - \sqrt{a_1}}{d} = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}} \dots (ii)$$$

From Eq. (*i*) and eq. (*ii*) we get

$$\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \frac{1}{\sqrt{a_3} + \sqrt{a_4}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} = \frac{n-1}{\sqrt{a_n} + \sqrt{a_1}}$$
 Hence proved.

Q11. Find the sum of the series $(3^3 - 2^3) + (5^3 - 4^3) + (7^3 - 6^3) + \cdots$ to (*i*) *n* terms (*ii*) 10 terms **Sol.** Given series

$$\Rightarrow (3^{3} - 2^{3}) + (5^{3} - 4^{3}) + (7^{3} - 6^{3}) + \cdots = (3^{3} + 5^{3} + 7^{3} + \cdots) - (2^{3} + 4^{3} + 6^{3} + \cdots) \Rightarrow [3^{3} + 5^{3} + 7^{3} + \dots (2n + 1)^{3}] - [2^{3} + 4^{3} + 6^{3} + \cdots (2n)^{3}] \therefore T_{n} = (2n + 1)^{3} - (2n)^{3} = (2n + 1 - 2n) [(2n + 1)^{2} + (2n + 1) (2n) + (2n)^{2}] [\because a^{3} - b^{3} = (a - b) (a^{2} + ab + b^{2})] = 1 \cdot [4n^{2} + 1 + 4n + 4n^{2} + 2n + 4n^{2}] = 12n^{2} + 6n + 1 (i) S_{n} = \sum T_{n} = 12 \sum n^{2} + 6 \sum n + n = 12 \cdot \frac{n(n + 1) (2n + 1)}{6} + \frac{6n(n + 1)}{2} + n = 2n(n + 1) (2n + 1) + 3n(n + 1) + n = n[2(n + 1) (2n + 1) + 3(n + 1) + 1] = n[2(n^{2} + 3n + 1) + 3n + 3 + 1] = n[4n^{2} + 6n + 2 + 3n + 4] = n[4n^{2} + 9n + 6] = 4n^{3} + 9n^{2} + 6n$$

NCERT Exemplar - Class 11

(*ii*)
$$S_{10} = 4(10)^3 + 9(10)^2 + 6(10) = 4 \times 1000 + 900 + 60$$

= 4000 + 960 = 4960

- **Q12.** Find the *r*th term of an A.P. sum of whose first *n* terms is $2n + 3n^2$
- Sol. Given that $S_n = 2n + 3n^2$ $\Rightarrow S_1 = 2 \times 1 + 3(1)^2 = 5$ $\Rightarrow S_2 = 2 \times 2 + 3 \times 4 = 16$ $\Rightarrow S_3 = 2 \times 3 + 3 \times 9 = 33$ $\therefore S_1 = a_1 = 5$ $S_2 - S_1 = a_2 = 16 - 5 = 11$ $\therefore d = a_2 - a_1 = 11 - 5 = 6$ Now $T_r = a_1 + (r - 1)d$ = 5 + (r - 1)6 = 5 + 6r - 6 = 6r - 1

Hence, the required *r*th term is 6r - 1

LONG ANSWER TYPE QUESTIONS

...

Q13. If A is the arithmetic mean and G_1 , G_2 be two geometric means

between any two numbers, then prove that $2A = \frac{G_1^2}{G_2} + \frac{G_2^2}{G_1}$. **Sol.** Let the two numbers be *x* and *y*

$$A = \frac{x + y}{2} \qquad \dots (i)$$

If G_1 and G_2 be the geometric means between *x* and *y* then *x*, G_1 , G_2 , *y* are in G.P.

then

$$y = xr^{4-1} \qquad [\because a_n = ar^{n-1}]$$

$$\Rightarrow \qquad y = xr^3 \Rightarrow \frac{y}{x} = r^3$$

$$\Rightarrow \qquad r = \left(\frac{y}{x}\right)^{1/3} \qquad [\because r = \left(\frac{y}{x}\right)^{1/3}]$$
Now

$$G_1 = xr = x\left(\frac{y}{x}\right)^{1/3} \qquad [\because r = \left(\frac{y}{x}\right)^{1/3}]$$
and

$$G_2 = xr^2 = x\left(\frac{y}{x}\right)^{2/3}$$

$$\therefore \text{ from RHS } \frac{G_1^2}{G_2} + \frac{G_2^2}{G_1} = \frac{x^2 \left(\frac{y}{x}\right)^{2/3}}{x \left(\frac{y}{x}\right)^{2/3}} + \frac{x^2 \left(\frac{y}{x}\right)^{4/3}}{x \left(\frac{y}{x}\right)^{1/3}}$$
$$= x + x \left(\frac{y}{x}\right)^{\frac{4}{3} - \frac{1}{3}} = x + x \left(\frac{y}{x}\right)^{\frac{4}{3} - \frac{1}{3}}$$

...

NCERT Exemplar - Class 11

= x + y = 2A LHS. [using eq. (*i*)] LHS = RHS Hence proved.

Q14. If $\theta_1, \theta_2, \theta_3, ..., \theta_n$ are in A.P., whose common difference is *d*, show that

 $\sec \theta_1 \cdot \sec \theta_2 + \sec \theta_2 \sec \theta_3 + \dots + \sec \theta_{n-1} \cdot \sec \theta_n = \frac{\tan \theta_n - \tan \theta_1}{\sin d}$ **Sol.** Since $\theta_1, \theta_2, \theta_3, ..., \theta_n$ are in A.P. $\theta_2 - \theta_1 = \theta_3 - \theta_2 = \dots = \theta_n - \theta_{n-1} = d$... Now we have to prove that $\sec \theta_1 \cdot \sec \theta_2 + \sec \theta_2 \cdot \sec \theta_3 + \dots + \sec \theta_{n-1} \cdot \sec \theta_n$ $= \frac{\tan \theta_n - \tan \theta_1}{\sin d} \quad \text{LHS.}$ $\Rightarrow \frac{\sin d}{\sin d} [\sec \theta_1 \cdot \sec \theta_2 + \sec \theta_2 \sec \theta_3 + \dots + \sec \theta_{n-1} \cdot \sec \theta_n]$ Taking only $\frac{\sin d[\sec \theta_1 \cdot \sec \theta_2]}{\sin d} = \frac{\sin d\left[\frac{1}{\cos \theta_1} \cdot \frac{1}{\cos \theta_2}\right]}{\sin d}$ $= \frac{\sin(\theta_2 - \theta_1)}{\sin d} \cdot \frac{1}{\cos \theta_1 \cos \theta_2}$ $= \frac{1}{\sin d} \left[\frac{\sin \theta_2 \cos \theta_1 - \cos \theta_2 \sin \theta_1}{\cos \theta_1 \cos \theta_2} \right]$ $= \frac{1}{\sin d} \left[\frac{\sin \theta_2 \cos \theta_1}{\cos \theta_1 \cos \theta_2} - \frac{\cos \theta_2 \sin \theta_1}{\cos \theta_1 \cos \theta_2} \right]$ $=\frac{1}{\sin d}[\tan \theta_2 - \tan \theta_1]$ Similarly we can solve other terms which will be $\frac{1}{\sin d}$ [tan θ_3 – tan θ_2] and $\frac{1}{\sin d}$ [tan θ_4 – tan θ_3] Here LHS = $\frac{1}{\sin d} [\tan \theta_2 - \tan \theta_1 + \tan \theta_3 - \tan \theta_2 + \dots +$ $\tan \theta_n - \tan \theta_{n-1}] = \frac{1}{\sin d} \left[-\tan \theta_1 + \tan \theta_n \right] = \frac{\tan \theta_n - \tan \theta_1}{\sin d}$ RHS.

LHS = RHS Hence proved.

- **Q15.** If the sum of *p* terms of an A.P. is *q* and *q* terms is *p*, show that the sum of p + q terms is -(p + q).
- **Sol.** Let *a* be the first term and *d* the common difference of the given A.P.

$$\therefore \qquad S_p = \frac{p}{2} [2a + (p-1)d] = q \implies 2a + (p-1)d = \frac{2q}{p} \quad \dots(i)$$

and
$$S_q = \frac{q}{2} [2a + (q-1)d] = p \implies 2a + (q-1)d = \frac{2p}{q} \quad \dots(ii)$$

Subtracting eq. (ii) from eq. (i) we get

$$(p-q)d = \frac{2q}{p} - \frac{2p}{q} \Rightarrow (p-q)d = \frac{2(q^2 - p^2)}{pq}$$
$$\Rightarrow \qquad (p-q)d = \frac{-2}{pq}(p^2 - q^2)$$
$$\Rightarrow \qquad (p-q)d = \frac{-2}{pq}(p+q)(p-q) \Rightarrow \qquad d = \frac{-2}{pq}(p+q)$$

Substituting the value of *d* in eq. (*i*) we get

$$2a + (p-1)\left[\frac{-2(p+q)}{pq}\right] = \frac{2q}{p}$$

$$\Rightarrow \quad 2a = \frac{2q}{p} + \frac{2(p-1)(p+q)}{pq} \quad \Rightarrow \quad a = \frac{q}{p} + \frac{(p-1)(p+q)}{pq}$$

$$\Rightarrow \quad a = \frac{q^2 + p^2 + pq - p - q}{pq}$$

Now
$$S_{p+q} = \frac{p+q}{2} [2a + (p+q-1)d]$$

$$= \frac{p+q}{2} \left[\frac{2q^2 + 2p^2 + 2pq - 2p - 2q}{pq} + \frac{(p+q-1)[-2(p+q)]}{pq} \right]$$

$$= \frac{p+q}{2} \left[\frac{2q^2 + 2p^2 + 2pq - 2p - 2q - 2p^2}{-2pq - 2q^2 + 2q} \right]$$

$$= \frac{p+q}{2} \left[\frac{-2pq}{pq} \right] = -(p+q) \text{ Hence proved.}$$

Q16. If *p*th, *q*th and *r*th terms of an A.P. and G.P. are both *a*, *b*, and *c* respectively. Show that

$$a^{b-c} \cdot b^{c-a} \cdot c^{a-b} = 1$$

Sol. Let A and *d* be the first term and common difference respectively of an A.P. and *x* and R be the first term and common ratio respectively of the G.P.

$$\therefore \qquad \mathbf{A} + (p-1)d = a \qquad \dots(i)$$

$$A + (q-1)d = b \qquad \dots (ii)$$

and
$$A + (r-1)d = c$$
 ...(iii)

For G.P., we have

	$x \mathbf{R}^{p-1} = a$	(<i>iv</i>)
	$x \mathbf{R}^{q-1} = b$	(<i>v</i>)
and	$x \mathbf{R}^{r-1} = c$	(<i>vi</i>)
Subtracting eq. (ii	i) from eq. (i) we get	
	(p-q)d = a-b	(vii)
Similarly,	(q-r)d = b-c	(<i>viii</i>)
and	(r-p)d = c-a	$\dots(ix)$
Now we have to	prove that	
$a^{b-c} \cdot b^{c-a}$	$\cdot c^{u-v} = 1$	
L.H.S. $a^{b-c} \cdot b^{c-a}$	c^{a-b}	
$= [x R^{p-1}]^{(a)}$	$(x R^{q-1})^{(r-p)d} \cdot [x R^{r-1}]^{(p-p)d}$	-q)d
t]	rom (i), (ii), (iii), (iv), (v), (vi), (vii), (viii), (ix)]
$= x^{(q-r)d} \cdot \mathbf{R}^{d}$	$(p-1) (q-r)d \cdot x^{(r-p)d} \cdot \mathbf{R}^{(q-1)(r-p)d} \cdot x^{(r-p)d}$	$c^{(p-q)d} \cdot \mathbf{R}^{(r-1)(p-q)d}$
$= \chi^{(q-r)d + (r-r)d}$	p)d + (p-q)d R(p-1)(q-r)d + (q-1)(r-p)d	+(r-1)(p-q)d
$= \chi^{(q-r+r-p+p)}$	$(q)^{-q)d} \cdot \mathbf{R}^{(pq-pr-q+r+qr-pq-r+p+pr-qr-p+q)}$	q)d
$= x^{(0)d} \cdot \mathbf{R}^{(0)}$	$^{d} = x^{0} \cdot \mathbf{R}^{0} = 1 \text{R.H.S.}$	
L.H.S. = R.H.S.	Hence proved.	

.. 1

OBJECTIVE TYPE QUESTIONS

Q17. If the sum of *n* terms of an A.P. is given by $S_n = 3n + 2n^2$, then the common difference of the A.P. is (b) 2 (a) 3 (c) 6 (d) 4 **Sol.** Given that $S_n = 3n + 2n^2$ $S_1 = 3(1) + 2(1)^2 = 5$ $S_2 = 3(2) + 2(4) = 14$ $S_1^2 = a_1 = 5$ $S_2 - S_1^{'} = a_2^{'} = 14 - 5 = 9$:. Common difference $d = a_2 - a_1 = 9 - 5 = 4$ Hence, the correct option is (*d*). Q18. The third term of G.P. is 4. The product of its first 5 terms is (a) 4^3 (b) 4^4 (c) 4⁵ (*d*) None of these **Sol.** Given that $T_3 = 4$ $[:: T_n = ar^{n-1}]$ $ar^{3-1} = 4$ \Rightarrow $ar^2 = 4$ \Rightarrow Product of first 5 terms = $a \cdot ar \cdot ar^2 \cdot ar^3 \cdot ar^4$ $= a^5 r^{10} = (ar^2)^5 = (4)^5$ Hence, the correct option is (*c*). Q19. If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is (*b*) 22 (c) 220 (*d*) 198 (*a*) 0

Chapter 9 - Sequence and Series NCERT Exemplar - Class 11 $T_n = a + (n-1)d$ Sol. $T_{o} = a + 8d$ *.*.. $T_{13} = a + 12d$ and As per the given condition 9[a + 8d] = 13[a + 12d] $9a + 72d = 13a + 156d \implies -4a = 84d$ \Rightarrow a = -21d...(*i*) \Rightarrow $T_{22} = a + 21d = -21d + 21d = 0$ [from eq. (i)] Now Hence, the correct option is (*a*). **Q20.** If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P., then the common ratio of the G.P. is (*a*) 3 (*b*) 1/3 (c) 2 (d) 1/2**Sol.** Since *x*, 2*y*, 3*z* are in A.P. 2y - x = 3z - 2y4y = x + 3z... \Rightarrow ...(*i*) Now *x*, *y*, *z* are in G.P. Common ratio $r = \frac{y}{x} = \frac{z}{y}$ $y^2 = xz$ *.*.. ...(*ii*) *.*.. putting the value of x from eq. (*i*), we get $y^2 = (4y - 3z)z \implies y^2 = 4yz - 3z^2$ $3z^2 - 4yz + y^2 = 0 \implies 3z^2 - 3yz - yz + y^2 = 0$ \Rightarrow $\Rightarrow 3z(z-y) - y(z-y) = 0 \Rightarrow (3z-y)(z-y) = 0$ 3z - y = 0 and z - y = 03z = y and $z \neq y$ \Rightarrow \Rightarrow [:: z and y are distinct numbers] $\frac{z}{y} = \frac{1}{3} \implies r = \frac{1}{3}$ (from eq. (ii)) \Rightarrow Hence, the correct option is (*b*). **Q21.** If in an A.P., $S_n = qn^2$ and $S_m = qm^2$, where S_r denotes the sum of *r* terms of the A.P., then S_a equals

(*a*) $q^3/2$ (*b*) mnq (*c*) q^3 (*d*) $(m+n)q^2$ **Sol.** The given series is A.P. whose first term is *a* and common difference is *d*

$$\begin{array}{ll} \ddots & \mathrm{S}_n = \frac{n}{2} [2a + (n-1)d] = qn^2 \\ \Rightarrow & = 2a + (n-1)d = 2qn & \dots(i) \\ \mathrm{S}_m = \frac{m}{2} [2a + (m-1)d] = qm^2 \\ \Rightarrow & 2a + (m-1)d = 2qm & \dots(ii) \end{array}$$

Solving eq. (i) and eq. (ii) we get 2a + (m-1)d = $\frac{2a + (n-1)d}{(-)} = \frac{2qn}{(-)}$ (m-n)d = 2qm - 2qn(m-n)d = 2q(m-n)d = 2q... Putting the value of *d* in eq. (*ii*) we get $2a + (m-1) \cdot 2q = 2qm \implies 2a = 2qm - (m-1)2q$ $2a = 2q(m - m + 1) \implies 2a = 2q \implies a = q$ \Rightarrow $S_q = \frac{q}{2}[2a + (q-1)d] = \frac{q}{2}[2q + (q-1)2q]$... $= \frac{q}{2}[2q + 2q^2 - 2q] = \frac{q}{2} \times 2q^2 = q^3$ Hence, the correct option is (*c*). **Q22.** Let S_n denote the sum of the first *n* terms of an A.P. if $S_{2n} = 3 \cdot S_n$ then $S_{3n} : S_n$ is equal to (a) 4 (b) 6 (c) (d) 10 $S_n = \frac{n}{2} [2a + (n-1)d]$ Sol. $S_{2n} = \frac{2n}{2} [2a + (2n - 1)d]$... $S_{3n} = \frac{3n}{2} [2a + (3n - 1)d]$ As per the condition of the question, we have $S_{2n} = 3 \cdot S_n$ $\frac{2n}{2}[2a + (2n-1)d] = 3 \cdot \frac{n}{2}[2a + (n-1)d]$ 2[2a + (2n - 1)d] = 3[2a + (n - 1)d] \Rightarrow 4a + (4n - 2)d = 6a + (3n - 3)d \Rightarrow 6a + (3n - 3)d - 4a - (4n - 2)d = 0 \Rightarrow $2a + (3n - 3 - 4n + 2)d = 0 \implies 2a + (-n - 1)d = 0$ $2a - (n + 1)d = 0 \implies 2a = (n + 1)d$ \Rightarrow \Rightarrow *(i)* Now S_{3n} : $S_n = \frac{3n}{2} [2a + (3n - 1)d]: \frac{n}{2} [2a + (n - 1)d]$ $=\frac{\frac{3n}{2}[2a+(3n-1)d]}{\frac{n}{2}[2a+(n-1)d]}=\frac{3[2a+(3n-1)d]}{2a+(n-1)d}$ $=\frac{3[(n+1)d + (3n-1)d]}{(n+1)d + (n-1)d}$

(d) 0

$$= \frac{3d[n+1+3n-1]}{d(n+1+n-1)} = \frac{3[4n]}{2n} = 6$$

Hence, the correct option is (*b*).

- **Q23.** The minimum value of $4^x + 4^{1-x}$, $x \in \mathbb{R}$ is (a) 2 (b) 4 (c) 1
- **Sol.** We know that $AM \ge GM$

$$\therefore \qquad \frac{4^{x} + 4^{1-x}}{2} \ge \sqrt{4^{x} \cdot 4^{1-x}} \implies 4^{x} + 4^{1-x} \ge 2\sqrt{4^{x+1-x}}$$
$$\implies \qquad 4^{x} + 4^{1-x} \ge 2 \cdot 2 \implies 4^{x} + 4^{1-x} \ge 4$$
Hence, the correct option is (b).

Q24. Let S_n denotes the sum of the cubes of the first *n* natural numbers and s_n denotes the sum of the first *n* natural numbers.

Then
$$\sum_{r=1}^{n} \frac{S_r}{s_n}$$

(a) $\frac{n(n+1)(n+2)}{6}$ (b) $\frac{n(n+1)}{2}$
(c) $\frac{n^2 + 3n + 2}{2}$ (d) None of these

Sol. Given that
$$\sum_{i=1}^{n} \frac{S_r}{s_r} = \frac{S_1}{s_1} + \frac{S_2}{s_2} + \frac{S_3}{s_3} + \dots + \frac{S_n}{s_n}$$

Let T_n be the *n*th term of the above series

$$\therefore \qquad T_n = \frac{S_n}{s_n} = \frac{\left[\frac{n(n+1)}{2}\right]^2}{\frac{n(n+1)}{2}} = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}$$

Now sum of the given series

$$\sum T_n = \frac{1}{2} \sum [n^2 + n] = \frac{1}{2} \left[\sum n^2 + \sum n \right]$$
$$= \frac{1}{2} \left[\frac{n(n+1)(2n+1)}{6} + \frac{n(n+1)}{2} \right]$$
$$= \frac{1}{2} \cdot \frac{n(n+1)}{2} \left[\frac{2n+1}{3} + 1 \right] = \frac{n(n+1)}{4} \left[\frac{2n+1+3}{3} \right]$$
$$= \frac{n(n+1)}{4} \cdot \frac{(2n+4)}{3} = \frac{n(n+1)(n+2)}{6}$$

Hence, the correct option is (*a*).

Q25. If t_n denotes the nth term of the series $2 + 3 + 6 + 11 + 18 + \dots$, then t_{50} is

(a)
$$49^2 - 1$$
 (b) 49^2 (c) $50^2 + 1$ (d) $49^2 + 2$

Sol. Let $S_{\mu} = 2 + 3 + 6 + 11 + 18 + \dots + t_{50}$ Using method of difference, we get $S_n = 2 + 3 + 6 + 11 + 18 + \dots + t_{50}$...(i) $S_n = 0 + 2 + 3 + 6 + 11 + \dots + t_{49} + t_{50}$ and ...(*ii*) Subtracting eq. (ii) from eq. (i), we get $0 = 2 + 1 + 3 + 5 + 7 + \dots - t_{50}$ terms $t_{50} = 2 + (1 + 3 + 5 + 7 + \dots \text{ upto } 49 \text{ terms})$ \Rightarrow $t_{50} = 2 + \frac{49}{2} [2 \times 1 + (49 - 1)2] = 2 + \frac{49}{2} [2 + 96]$ \Rightarrow $= 2 + \frac{49}{2} \times 98 = 2 + 49 \times 49 = 49^2 + 2$ Hence, the correct option is (*d*). Q26. The length of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm³ and the total surface area is 252 cm². The length of the largest edge is (*a*) 12 cm (*b*) 6 cm (c) 18 cm (*d*) 3 cm Sol. Let the length, breadth and height of a rectangular block be $\frac{a}{a}$, *a* and *ar*. [Since they are is G.P] ... Volume = $l \times b \times h$ $216 = \frac{a}{-} \times a \times ar$ $a^3 = 216 \implies a = 6$ \Rightarrow Now total surface area = 2[lb + bh + lh] $252 = 2\left[\frac{a}{r} \cdot a + a \cdot ar + \frac{a}{r} \cdot ar\right] \implies 252 = 2\left|\frac{a^2}{r} + a^2r + a^2\right|$ $\Rightarrow 252 = 2a^2 \left[\frac{1}{r} + r + 1 \right] \Rightarrow 252 = 2 \times (6)^2 \left| \frac{1 + r^2 + r}{r} \right|$ $\Rightarrow 252 = 72 \left[\frac{1+r^2+r}{r} \right] \Rightarrow \frac{252}{72} = \frac{1+r+r^2}{r}$ $\Rightarrow \quad \frac{7}{2} = \frac{1+r+r^2}{r} \quad \Rightarrow \quad 2+2r+2r^2 = 7r$ $2r^2 - 5r + 2 = 0 \implies 2r^2 - 4r - r + 2 = 0$ \Rightarrow $\Rightarrow 2r(r-2) - 1(r-2) = 0 \Rightarrow (r-2)(2r-1) = 0$ r - 2 = 0 and 2r - 1 = 0 \Rightarrow $r = 2, \frac{1}{2}$ *.*.. Therefore, the three edge are:

If r = 2 then edges are 3, 6, 12

If $r = \frac{1}{2}$ then edges are 12, 6, 3 So, the length of the longest edge = 12 Hence, the correct option is (*a*).

FILL IN THE BLANKS

Q27. If *a*, *b* and *c* are in G.P. then the value of $\frac{a-b}{b-c}$ is equal to

- **Sol.** Since *a*, *b* and *c* are in G.P $\therefore \qquad \frac{b}{a} = \frac{c}{b} = r \quad (\text{constant})$ $\Rightarrow \qquad b = ar \quad \text{and} \quad c = br \quad \Rightarrow \quad c = ar \cdot r = ar^2$ So $\qquad \frac{a - b}{b - c} = \frac{a - ar}{ar - ar^2} = \frac{a(1 - r)}{ar(1 - r)} = \frac{1}{r} = \frac{a}{b} = \frac{b}{c}$ Hence, the correct value of the filler is $\frac{a}{r}$ or $\frac{b}{r}$
- **Q28.** The sum of terms equidistant from the beginning and end in an A.P is equal to ______.
- **Sol.** Let A.P be a, a + d, a + 2d, a + 3d, ..., a + (n 1)d

Taking first and last term

 $a_1 + a_n = a + a + (n - 1)d = 2a + (n - 1)d$ Taking second and second last term

 $a_2 + a_{n-1} = (a + d) + [a + (n - 2)d] = 2a + (n - 1)d = a_1 + a_n$ Taking third from the beginning and the third from the end

 $a_3 + a_{n-2} = (a + 2d) + [a + (n - 3)d] = 2a + (n - 1)d = a_1 + a_n$ From the above pattern, we observe that the sum of terms equidistant from the beginning and the end in an A.P is equal to the [first term + last term]

Hence, the correct value of the filler is first term + last term.

- **Q29.** The third term of a G.P is 4, the product of first five terms is
- **Sol.** Given $T_3 = 4$ $\therefore ar^2 = 4$...(*i*) Product of first five terms $= a \cdot ar \cdot ar^2 \cdot ar^3 \cdot ar^4$ $= a^5r^{10} = (ar^2)^5 = (4)^5$ [from eq. (*i*)]

Hence, the correct value of the fillter is $(4)^5$.

TRUE/FALSE

- Q30. Two sequences can not be in both A.P and G.P together.
- **Sol.** Let us consider a G.P, *a* , *ar* and ar^2 If it is in A.P then $ar - a \neq ar^2 - ar$ Hence, the given statement is **True**.

- **Q31.** Every progression is a sequence but the converse i.e., every sequence is also a progression need not necessarily be true.
- **Sol.** Let us consider a sequence of prime numbers 2, 3, 5, 7, 11, ... It is clear that this progression is a sequence but sequence is not a progression because it does not follow a specific pattern. Here, the given statement is **True**.
- **Q32.** Any term of an A.P (except first) is equal to half the sum of terms which are equidistant from it.
- **Sol.** Let us consider an A.P a, a + d, a + 2d, ...

$$\therefore \qquad a_2 + a_4 = a + d + a + 3d = 2a + 4d = 2a_3$$

$$\Rightarrow \qquad a_3 = \frac{a_2 + a_4}{2}$$

$$\frac{a_3 + a_5}{2} = \frac{a + 2d + a + 4d}{2} = \frac{2a + 6d}{2}$$

$$\Rightarrow \qquad = a + 3d = a_4$$

Hence, the given statement is **True**.

- Q33. The sum or difference of two G.P's is again a G.P.
- **Sol.** Let us consider two G.P.'s

$$a_1, a_1r_1, a_1r_1^2, a_1r_1^3 \cdots a_1r_1^{n-1}$$

 $a_2, a_2r_2, a_2r_2^2, a_2r_2^3, \cdots a_2r_2^{n-1}$

and

Now Sum of two G.Ps

$$(a_{1} + a_{2}) + (a_{1}r_{1} + a_{2}r_{2}) + (a_{1}r_{1}^{2} + a_{2}r_{2}^{2}) \cdots$$
Now
$$\frac{T_{2}}{T_{1}} = \frac{a_{1}r_{1} + a_{2}r_{2}}{a_{1} + a_{2}} \text{ and } \frac{T_{3}}{T_{2}} = \frac{a_{1}r_{1}^{2} + a_{2}r_{2}^{2}}{a_{1}r_{1} + a_{2}r_{2}}$$
But
$$\frac{a_{1}r_{1} + a_{2}r_{2}}{a_{1} + a_{2}} \neq \frac{a_{1}r_{1}^{2} + a_{2}r_{2}^{2}}{a_{1}r_{1} + a_{2}r_{2}}$$
Now let us consider the difference G.P's
$$(a_{1} - a_{2}) + (a_{1}r_{1} - a_{2}r_{2}) + (a_{1}r_{1}^{2} - a_{2}r_{2}^{2})$$

$$\therefore \qquad \frac{T_{2}}{T_{1}} = \frac{a_{1}r_{1} - a_{2}r_{2}}{a_{1} - a_{2}} \text{ and } \frac{T_{3}}{T_{2}} = \frac{a_{1}r_{1}^{2} - a_{2}r_{2}^{2}}{a_{1}r_{1} - a_{2}r_{2}}$$
But
$$\frac{T_{2}}{T_{1}} \neq \frac{T_{3}}{T_{2}}$$
Hence, the given statement is False.

- **Q34.** If the sum of *n* terms of a sequence is quadratic expression then it always represents an A.P
- **Sol.** Let $S_n = an^2 + bn + c$ (quadratic expression) $S_1 = a + b + c$

$$\begin{array}{ll} \therefore & a_{1} = a + b + c \\ & S_{2} = 4a + 2b + c \\ & a_{2} = S_{2} - S_{1} = (4a + 2b + c) - (a + b + c) = 3a + b \\ & S_{3} = 9a + 3b + c \\ \Rightarrow & a_{3} = S_{3} - S_{2} = (9a + 3b + c) - (4a + 2b + c) = 5a + b \\ \text{Common difference } d = a_{2} - a_{1} = (3a + b) - (a + b + c) \\ & = 2a - c \\ \text{and} & d = a_{3} - a_{2} = (5a + b) - (3a + b) = 2a \\ \text{Here, we observe that } a_{2} - a_{1} \neq a_{3} - a_{2} \\ \text{So it does not represent an A.P} \end{array}$$

Hence, the given statement is False.Q35. Match the questions given under column I with their appropriate answers given under the column II

Column I	Column II	
(a) 4, 1, $\frac{1}{4}$, $\frac{1}{16}$	(<i>i</i>) A.P	
(b) 2, 3, 5, 7	(ii) Sequence	
(<i>c</i>) 13, 8, 3, -2, -7	(iii) G.P	

Sol. (a) 4, 1,
$$\frac{1}{4}$$
, $\frac{1}{16}$
Here, $\frac{a_2}{a_1} = \frac{1}{4}$, $\frac{a_3}{a_2} = \frac{1/4}{1} = \frac{1}{4}$ and $\frac{a_4}{a_3} = \frac{1/16}{1/4} = \frac{1}{4}$
Hence it is G.P
 \therefore (a) \leftrightarrow (iii)
(b) 2, 3, 5, 7
Here $a_2 - a_1 = 3 - 2 = 1$
 $a_3 - a_2 = 5 - 3 = 2$
 \therefore $a_2 - a_1 \neq a_3 - a_2$
Hence it is not A.P
 $\frac{a_2}{a_1} = \frac{3}{2}$, $\frac{a_3}{a_2} = \frac{5}{3}$
So, $\frac{3}{2} \neq \frac{5}{3}$
So it is not G.P
Hence it is sequence
 \therefore (b) \leftrightarrow (ii)
(c) 13, 8, 3, -2, -7
Here $a_2 - a_1 = 8 - 13 = -5$

Π

 $a_3 - a_2 = 3 - 8 = -5$ So, $a_2 - a_1 = a_3 - a_2 = -5$ So, it is an A.P Hence $(c) \leftrightarrow (i)$

Q36. Column I
(a)
$$1^2 + 2^2 + 3^2 + \dots + n^2$$

(b) $1^3 + 2^3 + 3^3 + \dots + n^3$
(c) $2 + 4 + 6 + \dots + 2n$
(d) $1 + 2 + 3 + \dots + n$
(e) $2 + 4 + 6 + \dots + 2n$
(fiv) $\frac{n(n+1)}{2}$
(fiv) $\frac{n(n+1)(2n+1)}{6}$
(fiv) $\frac{n(n+1)}{2}$
Sol. (a) Let $S_n = 1^2 + 2^2 + 3^2 + \dots + n^2$
 $K^3 - (K-1)^3 = 3K^2 - 3K + 1$
For $K = 1$, $1^3 - 0^3 = 3(1)^2 - 3(1) + 1$
For $K = 2$, $2^3 - 1^3 = 3(2)^2 - 3(2) + 1$
For $K = 3$, $3^3 - 2^3 = 3(3)^2 - 3(3) + 1$
For $K = 3$, $3^3 - 2^3 = 3(3)^2 - 3(n) + 1$
Adding Column wise, we get
 $n^3 - 0^3 = 3(1^2 + 2^2 + 3^2 + \dots + n^2) - 3(1 + 2 + 3 + \dots + n) + n$
 $\Rightarrow n^3 + \frac{3n(n+1)}{2} - n = 3 \cdot S_n$
 $\Rightarrow n^3 + \frac{3n(n+1)}{2} - n = 3 \cdot S_n$
 $\Rightarrow 6 \cdot S_n = n(2n^2 + 3n + 1)$
 $\Rightarrow 6 \cdot S_n = n(2n^2 + 3n + 1)$
 $\Rightarrow 6 \cdot S_n = n(n+1)(2n+1)$
 $\Rightarrow S_n = \frac{n(n+1)(2n+1)}{6}$

(b) Let
$$S_n = 1^3 + 2^3 + 3^3 + \dots + n^3$$

 $K^4 - (K - 1)^4 = 4K^3 - 6K^2 + 4K - 1$

19

NCERT Exemplar - Class 11

For K = 1 $1^4 - 0^4 = 4(1)^3 - 6(1)^2 + 4(1) - 1$ $2^4 - 1^4 = 4(2)^3 - 6(2)^2 + 4(2) - 1$ For K = 2For K = 3 $3^4 - 2^4 = 4(3)^3 - 6(3)^2 + 4(3) - 1$ For K = $n n^4 - (n-1)^4 = 4(n)^3 - 6(n^2) + 4(n) - 1$ Adding column wise, we get $n^4 - 0^4 = 4(1^3 + 2^3 + 3^3 + \dots + n^3)$ \Rightarrow $-6(1^2+2^2+3^2+\cdots+n^2)$ +4(1+2+3+...n)-n $n^4 = 4 \cdot S_n - \frac{6n(n+1)(2n+1)}{6} + \frac{4n(n+1)}{2} - n$ \Rightarrow $n^4 = 4 \cdot S_n - n(n+1)(2n+1) + 2n(n+1) - n$ \Rightarrow $n^4 + n(n+1)(2n+1) - 2n(n+1) + n = 4 \cdot S_n$ \Rightarrow $n[n^{3} + (n+1)(2n+1) - 2n - 2 + 1] = 4 \cdot S_{n}^{n}$ \Rightarrow $n[n^{3} + 2n^{2} + 3n + 1 - 2n - 1] = 4 \cdot S_{n}^{n}$ $n[n^{3} + 2n^{2} + n] = 4 \cdot S_{n}$ \Rightarrow \Rightarrow $\frac{n^2(n^2 + 2n + 1)}{4} = S_n$ \Rightarrow $\frac{n^2(n+1)^2}{4} = S_n$ \Rightarrow $S_n = \left\lceil \frac{n(n+1)}{2} \right\rceil^2$... Hence $(b) \leftrightarrow (i)$ (c) Let $S_n = 2 + 4 + 6 + \dots + 2n$ $= 2(1 + 2 + 3 + \dots + n)$ $= 2 \frac{n(n+1)}{2}$ = n(n + 1)Hence $(c) \leftrightarrow (ii)$ (d) Let $S_n = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$

Hence $(d) \leftrightarrow (iv)$