6.3 EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate.
Sol. Ball of salt is spherical
$\therefore \quad$ Volume of ball, $\mathrm{V}=\frac{4}{3} \pi r^{3}$, where $r=$ radius of the ball
As per the question, $\frac{d \mathrm{~V}}{d t} \propto \mathrm{~S}$, where $\mathrm{S}=$ surface area of the ball

$$
\Rightarrow \quad \frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right) \propto 4 \pi r^{2}
$$

$$
\Rightarrow \quad \frac{4}{3} \pi \cdot 3 r^{2} \cdot \frac{d r}{d t} \propto 4 \pi r^{2}
$$

$$
\Rightarrow \quad 4 \pi r^{2} \cdot \frac{d r}{d t}=\mathrm{K} \cdot 4 \pi r^{2} \quad(\mathrm{~K}=\text { Constant of proportionality })
$$

$$
\Rightarrow \quad \frac{d r}{d t}=\mathrm{K} \cdot \frac{4 \pi r^{2}}{4 \pi r^{2}}
$$

$$
\therefore \quad \frac{d r}{d t}=\mathrm{K} \cdot 1=\mathrm{K}
$$

Hence, the radius of the ball is decreasing at constant rate.
Q2. If the area of a circle increases at a uniform rate, then prove that perimeter varies inversely as the radius.
Sol. We know that:
Area of circle, $\mathrm{A}=\pi r^{2}$, where $r=$ radius of the circle.
and perimeter $=2 \pi r$
As per the question,

$$
\begin{array}{rlrl}
\qquad & \frac{d \mathrm{~A}}{d t} & =\mathrm{K}, \text { where } \mathrm{K}=\text { constant } \\
\Rightarrow \quad \frac{d}{d t}\left(\pi r^{2}\right) & =\mathrm{K} \Rightarrow \pi \cdot 2 r \cdot \frac{d r}{d t}=\mathrm{K} \\
& \therefore \quad \frac{d r}{d t} & =\frac{\mathrm{K}}{2 \pi r} \tag{1}\\
& &
\end{array}
$$

Differentiating both sides w.r.t., t, we get
$\Rightarrow \quad \frac{d c}{d t}=\frac{d}{d t}(2 \pi r) \quad \Rightarrow \quad \frac{d c}{d t}=2 \pi \cdot \frac{d r}{d t}$
$\Rightarrow \quad \frac{d c}{d t}=2 \pi \cdot \frac{\mathrm{~K}}{2 \pi r}=\frac{\mathrm{K}}{r}$
$\Rightarrow \quad \frac{d c}{d t} \propto \frac{1}{r}$
[From (1)]

Hence, the perimeter of the circle varies inversely as the radius of the circle.
Q3. A kite is moving horizontally at a height of 151.5 metres. If the speed of the kite is $10 \mathrm{~m} / \mathrm{s}$, how fast is the string being let out; when the kite is 250 m away from the boy who is flying the kite? The height of the boy is 1.5 m .
Sol. Given that height of the kite $(h)=151.5 \mathrm{~m}$
Speed of the kite $(V)=10 \mathrm{~m} / \mathrm{s}$
Let FD be the height of the kite and $A B$ be the height of the boy.
Let $\mathrm{AF}=x \mathrm{~m}$
$\therefore \quad \mathrm{BG}=\mathrm{AF}=x \mathrm{~m}$
and $\frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s}$
From the figure, we get that

$$
\begin{aligned}
\mathrm{GD} & =\mathrm{DF}-\mathrm{GF} \Rightarrow \mathrm{DF}-\mathrm{AB} \\
& =(151.5-1.5) \mathrm{m}=150 \mathrm{~m} \quad[\because \quad \mathrm{AB}=\mathrm{GF}]
\end{aligned}
$$

Now in $\triangle B G D$,

$$
\begin{array}{rlrl}
& \mathrm{BG}^{2}+\mathrm{GD}^{2} & =\mathrm{BD}^{2} & \quad \text { (By Pythagoras Theorem) } \\
\Rightarrow & x^{2}+(150)^{2} & =(250)^{2} \\
\Rightarrow & x^{2}+22500 & =62500 \quad \Rightarrow x^{2}=62500-22500 \\
\Rightarrow \quad x^{2} & =40000 \quad \Rightarrow x=200 \mathrm{~m}
\end{array}
$$

Let initially the length of the string be $y \mathrm{~m}$
$\therefore \quad$ In $\triangle \mathrm{BGD}$

$$
\mathrm{BG}^{2}+\mathrm{GD}^{2}=\mathrm{BD}^{2} \Rightarrow x^{2}+(150)^{2}=y^{2}
$$

Differentiating both sides w.r.t., t, we get

$$
\begin{array}{rlrl}
\Rightarrow & 2 x \cdot \frac{d x}{d t}+0 & =2 y \cdot \frac{d y}{d t} \\
\Rightarrow & 2 \times 200 \times 10 & =2 \times 250 \times \frac{d y}{d t} & {\left[\because \frac{d x}{d t}=10 \mathrm{~m} / \mathrm{s}\right]} \\
& \therefore & \frac{d y}{d t} & =\frac{2 \times 200 \times 10}{2 \times 250}=8 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Hence, the rate of change of the length of the string is $8 \mathrm{~m} / \mathrm{s}$.

Q4. Two men A and B start with velocities V at the same time from the junction of two roads inclined at 45° to each other. If they travel by different roads, find the rate at which they are being separated.
Sol. Let P be any point at which the two roads are inclined at an angle of 45°.
Two men A and B are moving along the roads PA and PB respectively with the same speed 'V'.

Let A and B be their final positions such that
$\mathrm{AB}=y$
$\angle \mathrm{APB}=45^{\circ}$ and they move with the same speed.
$\therefore \quad \triangle \mathrm{APB}$ is an isosceles triangle. Draw $\mathrm{PQ} \perp \mathrm{AB}$

$$
\begin{array}{r}
\mathrm{AB}=y \quad \therefore \quad \mathrm{AQ}=\frac{y}{2} \text { and } \mathrm{PA}=\mathrm{PB}=x \text { (let) } \\
\angle \mathrm{APQ}=\angle \mathrm{BPQ}=\frac{45}{2}=22 \frac{1}{2} \circ
\end{array}
$$

$[\because$ In an isosceles Δ, the altitude drawn from the vertex, bisects the base]
Now in right $\triangle \mathrm{APQ}$,

$$
\begin{aligned}
& \sin 22 \frac{1}{2}^{\circ}=\frac{\mathrm{AQ}}{\mathrm{AP}} \\
\Rightarrow \quad & \sin 22 \frac{1}{2}^{\circ}=\frac{\frac{y}{2}}{x}=\frac{y}{2 x} \quad \Rightarrow y=2 x \cdot \sin 22 \frac{1}{2}^{\circ}
\end{aligned}
$$

Differentiating both sides w.r.t, t, we get

$$
\begin{aligned}
\frac{d y}{d t} & =2 \cdot \frac{d x}{d t} \cdot \sin 22 \frac{1}{2} \circ \\
& =2 \cdot \mathrm{~V} \cdot \frac{\sqrt{2-\sqrt{2}}}{2} \quad\left[\because \sin 22 \frac{1}{2}^{\circ}=\frac{\sqrt{2-\sqrt{2}}}{2}\right] \\
& =\sqrt{2-\sqrt{2}} \mathrm{Vm} / \mathrm{s}
\end{aligned}
$$

Hence, the rate of their separation is $\sqrt{2-\sqrt{2}} \mathrm{~V}$ unit/s.
Q5. Find an angle $\theta, 0<\theta<\frac{\pi}{2}$, which increases twice as fast as its sine.
Sol. As per the given condition,

$$
\begin{array}{rlrl}
\frac{d \theta}{d t} & =2 \frac{d}{d t}(\sin \theta) \\
\Rightarrow \quad & \frac{d \theta}{d t} & =2 \cos \theta \cdot \frac{d \theta}{d t} \Rightarrow 1=2 \cos \theta \\
\therefore \quad \cos \theta & =\frac{1}{2} \Rightarrow \quad \cos \theta=\cos \frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{3}
\end{array}
$$

Hence, the required angle is $\frac{\pi}{3}$.

Q6. Find the approximate value of $(1.999)^{5}$.
Sol. $(1.999)^{5}=(2-0.001)^{5}$
Let

$$
x=2 \text { and } \Delta x=-0.001
$$

Let $\quad y=x^{5}$
Differentiating both sides w.r.t, x, we get

$$
\begin{aligned}
\frac{d y}{d x} & =5 x^{4}=5(2)^{4}=80 \\
\text { Now } \quad \Delta y & =\left(\frac{d y}{d x}\right) \cdot \Delta x=80 \cdot(-0.001)=-0.080 \\
\therefore \quad(1.999)^{5} & =y+\Delta y \\
& =x^{5}-0.080=(2)^{5}-0.080=32-0.080=31.92
\end{aligned}
$$

Hence, approximate value of $(1.999)^{5}$ is 31.92 .
Q7. Find the approximate volume of metal in a hollow spherical shell whose internal and external radii are 3 cm and 3.0005 cm respectively.
Sol. Internal radius $r=3 \mathrm{~cm}$
and external radius $\mathrm{R}=r+\Delta r=3.0005 \mathrm{~cm}$

$$
\begin{array}{lrl}
\therefore & \Delta r & =3.0005-3=0.0005 \mathrm{~cm} \\
\text { Let } & y & =r^{3} \Rightarrow y+\Delta y=(r+\Delta r)^{3}=R^{3}=(3.0005)^{3}
\end{array}
$$

Differentiating both sides w.r.t., r, we get

$$
\begin{aligned}
& \qquad \begin{aligned}
& \frac{d y}{d r}=3 r^{2} \\
& \therefore \quad \Delta y=\frac{d y}{d r} \times \Delta r=3 r^{2} \times 0.0005 \\
&=3 \times(3)^{2} \times 0.0005=27 \times 0.0005=0.0135 \\
&\therefore \quad \text { [From eq. }(i)] \\
& \therefore \quad(3.0005)^{3}=y+\Delta y \\
&=(3)^{3}+0.0135=27+0.0135=27.0135 \\
& \text { Volume of the shell }=\frac{4}{3} \pi\left[R^{3}-r^{3}\right] \\
&=\frac{4}{3} \pi[27.0135-27]=\frac{4}{3} \pi \times 0.0135 \\
&=4 \pi \times 0.005=4 \times 3.14 \times 0.0045=0.018 \pi \mathrm{~cm}^{3}
\end{aligned} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Hence, the approximate volume of the metal in the shell is $0.018 \pi \mathrm{~cm}^{3}$.
Q8. A man, 2 m tall, walks at the rate of $1 \frac{2}{3} \mathrm{~m} / \mathrm{s}$ towards a street light which is $5 \frac{1}{3} \mathrm{~m}$ above the ground. At what rate is the tip of his shadow moving? At what rate is the length of the shadow changing when he is $3 \frac{1}{3} \mathrm{~m}$ from the base of the light?

Sol. Let AB is the height of street light post and CD is the height of the man such that

$$
\mathrm{AB}=5 \frac{1}{3}=\frac{16}{3} \mathrm{~m} \text { and } \mathrm{CD}=2 \mathrm{~m}
$$

Let $\mathrm{BC}=x$ length (the distance of the man from the lamp post) and $C E=y$ is the length of the shadow of the man at any instant. From the figure, we see that
$\triangle \mathrm{ABE} \sim \triangle \mathrm{DCE}$
[by AAA Similarity]
$\therefore \quad$ Taking ratio of their corresponding sides, we get

$$
\begin{array}{rlrl}
& \frac{\mathrm{AB}}{\mathrm{CD}} & =\frac{\mathrm{BE}}{\mathrm{CE}} \Rightarrow \frac{\mathrm{AB}}{\mathrm{CD}}=\frac{\mathrm{BC}+\mathrm{CE}}{\mathrm{CE}} \\
\Rightarrow \quad \frac{16 / 3}{2} & =\frac{x+y}{y} \Rightarrow \frac{8}{3}=\frac{x+y}{y} \\
\Rightarrow & 8 y & =3 x+3 y & \Rightarrow 8 y-3 y=3 x \quad \Rightarrow 5 y=3 x
\end{array}
$$

Differentiating both sides w.r.t, t, we get

$$
\begin{aligned}
& \cdot \frac{d y}{d t}=3 \cdot \frac{d x}{d t} \\
& \Rightarrow \quad \frac{d y}{d t}=\frac{3}{5} \cdot \frac{d x}{d t} \Rightarrow \frac{d y}{d t}=\frac{3}{5} \cdot\left(-1 \frac{2}{3}\right)=\frac{3}{5} \cdot\left(\frac{-5}{3}\right) \\
& {[\because \text { man is moving in opposite direction }] } \\
&=-1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Hence, the length of shadow is decreasing at the rate of $1 \mathrm{~m} / \mathrm{s}$. Now let $u=x+y$
($u=$ distance of the tip of shadow from the light post)
Differentiating both sides w.r.t. t, we get

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{d x}{d t}+\frac{d y}{d t} \\
& =\left(-1 \frac{2}{3}-1\right)=-\left(\frac{5}{3}+1\right)=-\frac{8}{3}=-2 \frac{2}{3} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Hence, the tip of the shadow is moving at the rate of $2 \frac{2}{3} \mathrm{~m} / \mathrm{s}$ towards the light post and the length of shadow decreasing at the rate of $1 \mathrm{~m} / \mathrm{s}$.

Q9. A swimming pool is to be drained for cleaning. If L represents the number of litres of water in the pool t seconds after the pool has been plugged off to drain and $\mathrm{L}=200(10-t)^{2}$. How fast is the water running out at the end of 5 seconds? What is the average rate at which the water flows out during the first 5 seconds?
Sol. Given that $\mathrm{L}=200(10-t)^{2}$
where L represents the number of litres of water in the pool.
Differentiating both sides w.r.t, t, we get

$$
\frac{d \mathrm{~L}}{d t}=200 \times 2(10-t)(-1)=-400(10-t)
$$

But the rate at which the water is running out

$$
\begin{equation*}
=-\frac{d \mathrm{~L}}{d t}=400(10-t) \tag{1}
\end{equation*}
$$

Rate at which the water is running after 5 seconds

$$
=400 \times(10-5)=2000 \mathrm{~L} / \mathrm{s} \text { (final rate) }
$$

For initial rate put $t=0$

$$
=400(10-0)=4000 \mathrm{~L} / \mathrm{s}
$$

The average rate at which the water is running out $=\frac{\text { Initial rate }+ \text { Final rate }}{2}=\frac{4000+2000}{2}=\frac{6000}{2}=3000 \mathrm{~L} / \mathrm{s}$
Hence, the required rate $=3000 \mathrm{~L} / \mathrm{s}$.
Q10. The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.
Sol. Let x be the length of the cube
$\therefore \quad$ Volume of the cube $\mathrm{V}=x^{3}$
Given that $\frac{d \mathrm{~V}}{d t}=\mathrm{K}$
Differentiating Eq. (1) w.r.t. t, we get

$$
\begin{array}{rlrl}
& & \frac{d \mathrm{~V}}{d t} & =3 x^{2} \cdot \frac{d x}{d t}=\mathrm{K}(\text { constant }) \\
\therefore & \frac{d x}{d t} & =\frac{\mathrm{K}}{3 x^{2}}
\end{array}
$$

Now surface area of the cube, $S=6 x^{2}$
Differentiating both sides w.r.t. t, we get

$$
\begin{aligned}
\frac{d s}{d t} & =6 \cdot 2 \cdot x \cdot \frac{d x}{d t}=12 x \cdot \frac{\mathrm{~K}}{3 x^{2}} \\
\Rightarrow \quad \frac{d s}{d t} & =\frac{4 \mathrm{~K}}{x} \Rightarrow \frac{d s}{d t} \propto \frac{1}{x} \quad(4 \mathrm{~K}=\text { constant })
\end{aligned}
$$

Hence, the surface area of the cube varies inversely as the length of the side.

Q11. x and y are the sides of two squares such that $y=x-x^{2}$. Find the rate of change of the area of second square with respect to the area of first square.
Sol. Let area of the first square $\mathrm{A}_{1}=x^{2}$
and area of the second square $\mathrm{A}_{2}=y^{2}$
Now $\mathrm{A}_{1}=x^{2}$ and $\mathrm{A}_{2}=y^{2}=\left(x-x^{2}\right)^{2}$
Differentiating both A_{1} and A_{2} w.r.t. t, we get

$$
\begin{aligned}
\frac{d \mathrm{~A}_{1}}{d t} & =2 x \cdot \frac{d x}{d t} \text { and } \frac{d \mathrm{~A}_{2}}{d t}=2\left(x-x^{2}\right)(1-2 x) \cdot \frac{d x}{d t} \\
\therefore \quad \frac{d \mathrm{~A}_{2}}{d \mathrm{~A}_{1}} & =\frac{\frac{d \mathrm{~A}_{2}}{d t}}{\frac{d \mathrm{~A}_{1}}{d t}}=\frac{2\left(x-x^{2}\right)(1-2 x) \cdot \frac{d x}{d t}}{2 x \cdot \frac{d x}{d t}} \\
& =\frac{x(1-x)(1-2 x)}{x}=(1-x)(1-2 x) \\
& =1-2 x-x+2 x^{2}=2 x^{2}-3 x+1
\end{aligned}
$$

Hence, the rate of change of area of the second square with respect to first is $2 x^{2}-3 x+1$.
Q12. Find the condition that the curves $2 x=y^{2}$ and $2 x y=k$ intersect orthogonally.
Sol. The two circles intersect orthogonally if the angle between the tangents drawn to the two circles at the point of their intersection is 90°.
Equation of the two circles are given as

$$
\begin{align*}
2 x & =y^{2} \tag{i}\\
2 x y & =k \tag{ii}
\end{align*}
$$

Differentiating eq. (i) and (ii) w.r.t. x, we get

$$
\begin{aligned}
& 2.1=2 y \cdot \frac{d y}{d x} \Rightarrow \frac{d y}{d x}=\frac{1}{y} \Rightarrow m_{1}=\frac{1}{y} \\
& \text { (} m_{1}=\text { slope of the tangent) } \\
& \Rightarrow \quad 2 x y=k \\
& \Rightarrow 2\left[x \cdot \frac{d y}{d x}+y \cdot 1\right]=0 \\
& \therefore \quad \frac{d y}{d x}=-\frac{y}{x} \Rightarrow m_{2}=-\frac{y}{x} \\
& \text { [} m_{2}=\text { slope of the other tangent] }
\end{aligned}
$$

If the two tangents are perpendicular to each other,
then $\quad m_{1} \times m_{2}=-1$
$\Rightarrow \quad \frac{1}{y} \times\left(-\frac{y}{x}\right)=-1 \Rightarrow \frac{1}{x}=1 \Rightarrow x=1$

Now solving

$$
2 x=y^{2}
$$

[From (i)]
and
$2 x y=k$
[From (ii)]
From eq. (ii)

$$
y=\frac{k}{2 x}
$$

Putting the value of y in eq. (i)

$$
\begin{aligned}
2 x & =\left(\frac{k}{2 x}\right)^{2} \Rightarrow 2 x=\frac{k^{2}}{4 x^{2}} \\
\Rightarrow \quad 8 x^{3} & =k^{2} \Rightarrow 8(1)^{3}=k^{2} \Rightarrow 8=k^{2}
\end{aligned}
$$

Hence, the required condition is $k^{2}=8$.
Q13. Prove that the curves $x y=4$ and $x^{2}+y^{2}=8$ touch each other.
Sol. Given circles are $x y=4$ and

$$
\begin{equation*}
x^{2}+y^{2}=8 \tag{i}
\end{equation*}
$$

Differentiating eq. (i) w.r.t., x

$$
\begin{array}{rlrl}
& x \cdot \frac{d y}{d x}+y \cdot 1 & =0 \\
\Rightarrow \quad \frac{d y}{d x} & =-\frac{y}{x} \quad \Rightarrow m_{1}=-\frac{y}{x} \tag{iii}
\end{array}
$$

where, m_{1} is the slope of the tangent to the curve.
Differentiating eq. (ii) w.r.t. x

$$
2 x+2 y \cdot \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{x}{y} \Rightarrow m_{2}=-\frac{x}{y}
$$

where, m_{2} is the slope of the tangent to the circle.
To find the point of contact of the two circles

$$
m_{1}=m_{2} \Rightarrow-\frac{y}{x}=-\frac{x}{y} \Rightarrow x^{2}=y^{2}
$$

Putting the value of y^{2} in eq. (ii)

$$
\begin{aligned}
& & x^{2}+x^{2} & =8 \Rightarrow 2 x^{2}=8 \Rightarrow x^{2}=4 \\
& \therefore & x & = \pm 2 \\
& & x^{2} & =y^{2} \Rightarrow y=y 2
\end{aligned}
$$

\therefore The point of contact of the two circles are $(2,2)$ and $(-2,2)$.
Q14. Find the coordinates of the point on the curve $\sqrt{x}+\sqrt{y}=4$ at which tangent is equally inclined to the axes.
Sol. Equation of curve is given by $\sqrt{x}+\sqrt{y}=4$
Let $\left(x_{1}, y_{1}\right)$ be the required point on the curve
$\therefore \quad \sqrt{x_{1}}+\sqrt{y_{1}}=4$
Differentiating both sides w.r.t. x_{1}, we get

$$
\frac{d}{d x_{1}} \sqrt{x_{1}}+\frac{d}{d x_{1}} \sqrt{y_{1}}=\frac{d}{d x_{1}}(4)
$$

$\Rightarrow \quad \frac{1}{2 \sqrt{x_{1}}}+\frac{1}{2 \sqrt{y_{1}}} \cdot \frac{d y_{1}}{d x_{1}}=0$
$\Rightarrow \quad \frac{1}{\sqrt{x_{1}}}+\frac{1}{\sqrt{y_{1}}} \cdot \frac{d y_{1}}{d x_{1}}=0 \quad \Rightarrow \quad \frac{d y_{1}}{d x_{1}}=-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}$

Since the tangent to the given curve at $\left(x_{1}, y_{1}\right)$ is equally inclined to the axes.
\therefore Slope of the tangent $\frac{d y_{1}}{d x_{1}}= \pm \tan \frac{\pi}{4}= \pm 1$
So, from eq. (i) we get

$$
-\frac{\sqrt{y_{1}}}{\sqrt{x_{1}}}= \pm 1
$$

Squaring both sides, we get

$$
\frac{y_{1}}{x_{1}}=1 \Rightarrow y_{1}=x_{1}
$$

Putting the value of y_{1} in the given equation of the curve.

$$
\begin{array}{rlrl}
& \sqrt{x_{1}}+\sqrt{y_{1}} & =4 \\
\Rightarrow & \sqrt{x_{1}}+\sqrt{x_{1}} & =4 \Rightarrow 2 \sqrt{x_{1}}=4 \Rightarrow \sqrt{x_{1}}=2 \Rightarrow x_{1}=4 \\
& \Rightarrow & & \\
\text { Since } & y_{1} & =x_{1} \\
\therefore & y_{1} & =4
\end{array}
$$

Hence, the required point is $(4,4)$.
Q15. Find the angle of intersection of the curves $y=4-x^{2}$ and $y=x^{2}$.
Sol. We know that the angle of intersection of two curves is equal to the angle between the tangents drawn to the curves at their point of intersection.
The given curves are $y=4-x^{2} \ldots$ (i) and $y=x^{2}$
Differentiating eq. (i) and (ii) with respect to x, we have

$$
\frac{d y}{d x}=-2 x \Rightarrow m_{1}=-2 x
$$

m_{1} is the slope of the tangent to the curve (i).
and

$$
\frac{d y}{d x}=2 x \quad \Rightarrow \quad m_{2}=2 x
$$

m_{2} is the slope of the tangent to the curve (ii).
So, $m_{1}=-2 x$ and $m_{2}=2 x$
Now solving eq. (i) and (ii) we get
$\Rightarrow 4-x^{2}=x^{2} \Rightarrow 2 x^{2}=4 \Rightarrow x^{2}=2 \Rightarrow x= \pm \sqrt{2}$
So,

$$
m_{1}=-2 x=-2 \sqrt{2} \text { and } m_{2}=2 x=2 \sqrt{2}
$$

Let θ be the angle of intersection of two curves

$$
\begin{array}{rlrl}
& \therefore & \tan \theta & =\left|\frac{m_{2}-m_{1}}{1+m_{1} m_{2}}\right| \\
& =\left|\frac{2 \sqrt{2}+2 \sqrt{2}}{1-(2 \sqrt{2})(2 \sqrt{2})}\right|=\left|\frac{4 \sqrt{2}}{1-8}\right|=\left|\frac{4 \sqrt{2}}{-7}\right|=\frac{4 \sqrt{2}}{7} \\
& \therefore & \theta & =\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)
\end{array}
$$

Hence, the required angle is $\tan ^{-1}\left(\frac{4 \sqrt{2}}{7}\right)$.
Q16. Prove that the curves $y^{2}=4 x$ and $x^{2}+y^{2}-6 x+1=0$ touch each other at the point $(1,2)$.
Sol. Given that the equation of the two curves are $y^{2}=4 x$
and

$$
\begin{equation*}
x^{2}+y^{2}-6 x+1=0 \tag{i}
\end{equation*}
$$

Differentiating (i) w.r.t. x, we get $2 y \frac{d y}{d x}=4 \Rightarrow \frac{d y}{d x}=\frac{2}{y}$
Slope of the tangent at $(1,2), m_{1}=\frac{2}{2}=1$
Differentiating (ii) w.r.t. $x \Rightarrow 2 x+2 y \cdot \frac{d y}{d x}-6=0$
$\Rightarrow \quad 2 y \cdot \frac{d y}{d x}=6-2 x \Rightarrow \frac{d y}{d x}=\frac{6-2 x}{2 y}$
$\therefore \quad$ Slope of the tangent at the same point $(1,2)$

$$
\Rightarrow \quad m_{2}=\frac{6-2 \times 1}{2 \times 2}=\frac{4}{4}=1
$$

We see that $m_{1}=m_{2}=1$ at the point $(1,2)$.
Hence, the given circles touch each other at the same point (1, 2).
Q17. Find the equation of the normal lines to the curve $3 x^{2}-y^{2}=8$ which are parallel to the line $x+3 y=4$.
Sol. We have equation of the curve $3 x^{2}-y^{2}=8$
Differentiating both sides w.r.t. x, we get
$\Rightarrow \quad 6 x-2 y \cdot \frac{d y}{d x}=0 \Rightarrow-2 y \frac{d y}{d x}=-6 x \Rightarrow \frac{d y}{d x}=\frac{3 x}{y}$
Slope of the tangent to the given curve $=\frac{3 x}{y}$
$\therefore \quad$ Slope of the normal to the curve $=-\frac{1}{\frac{3 x}{y}}=-\frac{y}{3 x}$.
Now differentiating both sides the given line $x+3 y=4$
$\Rightarrow \quad 1+3 \cdot \frac{d y}{d x}=0 \quad \Rightarrow \quad \frac{d y}{d x}=-\frac{1}{3}$
Since the normal to the curve is parallel to the given line $x+3 y=4$.

$$
\therefore \quad-\frac{y}{3 x}=-\frac{1}{3} \Rightarrow y=x
$$

Putting the value of y in $3 x^{2}-y^{2}=8$, we get

$$
\begin{array}{rlrl}
& & 3 x^{2}-x^{2} & =8 \Rightarrow 2 x^{2}=8 \Rightarrow x^{2}=4 \Rightarrow x= \pm 2 \\
& \therefore & = \pm 2
\end{array}
$$

$\therefore \quad$ The points on the curve are $(2,2)$ and $(-2,-2)$.
Now equation of the normal to the curve at $(2,2)$ is

$$
\begin{array}{rlrl}
& & y-2 & =-\frac{1}{3}(x-2) \\
\Rightarrow & 3 y-6 & =-x+2 \Rightarrow x+3 y=8 \\
& \text { at }(-2,-2) & y+2 & =-\frac{1}{3}(x+2) \\
\Rightarrow & 3 y+6 & =-x-2 \Rightarrow x+3 y=-8
\end{array}
$$

Hence, the required equations are $x+3 y=8$ and $x+3 y=-8$ or $x+3 y= \pm 8$.
Q18. At what points on the curve $x^{2}+y^{2}-2 x-4 y+1=0$, the tangents are parallel to the y-axis?
Sol. Given that the equation of the curve is

$$
\begin{equation*}
x^{2}+y^{2}-2 x-4 y+1=0 \tag{i}
\end{equation*}
$$

Differentiating both sides w.r.t. x, we have

$$
\begin{align*}
& 2 x+2 y \cdot \frac{d y}{d x}-2-4 \cdot \frac{d y}{d x} & =0 \\
\Rightarrow \quad & (2 y-4) \frac{d y}{d x} & =2-2 x \Rightarrow \frac{d y}{d x}=\frac{2-2 x}{2 y-4} \tag{ii}
\end{align*}
$$

Since the tangent to the curve is parallel to the y-axis.
$\therefore \quad$ Slope $\frac{d y}{d x}=\tan \frac{\pi}{2}=\infty=\frac{1}{0}$
So, from eq. (ii) we get

$$
\frac{2-2 x}{2 y-4}=\frac{1}{0} \Rightarrow 2 y-4=0 \Rightarrow y=2
$$

Now putting the value of y in eq. (i), we get

```
\(\Rightarrow \quad x^{2}+(2)^{2}-2 x-8+1=0\)
\(\Rightarrow \quad x^{2}-2 x+4-8+1=0\)
\(\Rightarrow \quad x^{2}-2 x-3=0 \quad \Rightarrow \quad x^{2}-3 x+x-3=0\)
\(\Rightarrow \quad x(x-3)+1(x-3)=0 \quad \Rightarrow(x-3)(x+1)=0\)
\(\Rightarrow \quad x=-1\) or 3
```

Hence, the required points are $(-1,2)$ and $(3,2)$.

Q19. Show that the line $\frac{x}{a}+\frac{y}{b}=1$, touches the curve $y=b \cdot e^{-x / a}$ at the point where the curve intersects the axis of y.
Sol. Given that $y=b \cdot e^{-x / a}$, the equation of curve and $\frac{x}{a}+\frac{y}{b}=1$, the equation of line.
Let the coordinates of the point where the curve intersects the y-axis be $\left(0, y_{1}\right)$
Now differentiating $y=b \cdot e^{-x / a}$ both sides w.r.t. x, we get

$$
\frac{d y}{d x}=b \cdot e^{-x / a}\left(-\frac{1}{a}\right)=-\frac{b}{a} \cdot e^{-x / a}
$$

So, the slope of the tangent, $m_{1}=-\frac{b}{a} e^{-x / a}$.
Differentiating $\frac{x}{a}+\frac{y}{b}=1$ both sides w.r.t. x, we get

$$
\frac{1}{a}+\frac{1}{b} \cdot \frac{d y}{d x}=0
$$

So, the slope of the line, $m_{2}=\frac{-b}{a}$.
If the line touches the curve, then $m_{1}=m_{2}$
$\begin{array}{llll}\Rightarrow & \frac{-b}{a} \cdot e^{-x / a}=\frac{-b}{a} & \Rightarrow & e^{-x / a}=1 \\ \Rightarrow & \frac{-x}{a} \log e & =\log 1 & \\ & & \text { (Taking log on both sides) } \\ \Rightarrow & & \frac{-x}{a} & =0\end{array}$
Putting $x=0$ in equation $y=b \cdot e^{-x / a}$
$\Rightarrow \quad y=b \cdot e^{0}=b$
Hence, the given equation of curve intersect at $(0, b)$ i.e. on y-axis.
Q20. Show that $f(x)=2 x+\cot ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right)$ is increasing in \mathbf{R}.
Sol. Given that $f(x)=2 x+\cot ^{-1} x+\log \left(\sqrt{1+x^{2}}-x\right)$
Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
f^{\prime}(x) & =2-\frac{1}{1+x^{2}}+\frac{1}{\sqrt{1+x^{2}}-x} \times \frac{d}{d x}\left(\sqrt{1+x^{2}}-x\right) \\
& =2-\frac{1}{1+x^{2}}+\frac{\left(\frac{1}{2 \sqrt{1+x^{2}}} \times(2 x-1)\right)}{\sqrt{1+x^{2}}-x}
\end{aligned}
$$

$$
\begin{aligned}
& =2-\frac{1}{1+x^{2}}+\frac{x-\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}-x}\right)} \\
& =2-\frac{1}{1+x^{2}}-\frac{\left(\sqrt{1+x^{2}}-x\right)}{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}-x\right)} \\
& =2-\frac{1}{1+x^{2}}-\frac{1}{\sqrt{1+x^{2}}}
\end{aligned}
$$

For increasing function, $f^{\prime}(x) \geq 0$

$$
\begin{aligned}
& \therefore \quad 2-\frac{1}{1+x^{2}}-\frac{1}{\sqrt{1+x^{2}}} \geq 0 \\
& \Rightarrow \quad \frac{2\left(1+x^{2}\right)-1+\sqrt{1+x^{2}}}{\left(1+x^{2}\right)} \geq 0 \Rightarrow 2+2 x^{2}-1+\sqrt{1+x^{2}} \geq 0 \\
& \Rightarrow \quad 2 x^{2}+1+\sqrt{1+x^{2}} \geq 0 \Rightarrow 2 x^{2}+1 \geq-\sqrt{1+x^{2}}
\end{aligned}
$$

Squaring both sides, we get $4 x^{4}+1+4 x^{2} \geq 1+x^{2}$
$\Rightarrow 4 x^{4}+4 x^{2}-x^{2} \geq 0 \Rightarrow 4 x^{4}+3 x^{2} \geq 0 \quad \Rightarrow x^{2}\left(4 x^{2}+3\right) \geq 0$
which is true for any value of $x \in \mathrm{R}$.
Hence, the given function is an increasing function over R .
Q21. Show that for $a \geq 1, f(x)=\sqrt{3} \sin x-\cos x-2 a x+b$ is decreasing in \mathbf{R}.
Sol. Given that: $f(x)=\sqrt{3} \sin x-\cos x-2 a x+b, a \geq 1$
Differentiating both sides w.r.t. x, we get

$$
f^{\prime}(x)=\sqrt{3} \cos x+\sin x-2 a
$$

For decreasing function, $f^{\prime}(x)<0$

$$
\begin{aligned}
\therefore & \sqrt{3} \cos x+\sin x-2 a & <0 \\
\Rightarrow & 2\left(\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x\right)-2 a & <0 \\
\Rightarrow & \frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x-a & <0 \\
\Rightarrow & \left(\cos \frac{\pi}{6} \cos x+\sin \frac{\pi}{6} \sin x\right)-a & <0 \\
\Rightarrow & \cos \left(x-\frac{\pi}{6}\right)-a & <0
\end{aligned}
$$

Since $\cos x \in[-1,1]$ and $a \geq 1$
$\therefore \quad f^{\prime}(x)<0$
Hence, the given function is decreasing in R.

Q22. Show that $f(x)=\tan ^{-1}(\sin x+\cos x)$ is an increasing function in $\left(0, \frac{\pi}{4}\right)$.
Sol. Given that: $f(x)=\tan ^{-1}(\sin x+\cos x)$ in $\left(0, \frac{\pi}{4}\right)$
Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
\quad f^{\prime}(x) & =\frac{1}{1+(\sin x+\cos x)^{2}} \cdot \frac{d}{d x}(\sin x+\cos x) \\
\Rightarrow & f^{\prime}(x)=\frac{1 \times(\cos x-\sin x)}{1+(\sin x+\cos x)^{2}} \\
\Rightarrow & f^{\prime}(x)=\frac{\cos x-\sin x}{1+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x} \\
\Rightarrow & f^{\prime}(x)=\frac{\cos x-\sin x}{1+1+2 \sin x \cos x} \Rightarrow f^{\prime}(x)=\frac{\cos x-\sin x}{2+2 \sin x \cos x}
\end{aligned}
$$

For an increasing function $f^{\prime}(x) \geq 0$
$\therefore \quad \frac{\cos x-\sin x}{2+2 \sin x \cos x} \geq 0$
$\Rightarrow \quad \begin{aligned} & 2+2 \sin x \cos x \\ & \cos x-\sin x \geq 0\end{aligned} \quad\left[\because \quad(2+\sin 2 x) \geq 0\right.$ in $\left.\left(0, \frac{\pi}{4}\right)\right]$
$\Rightarrow \quad \cos x \geq \sin x$, which is true for $\left(0, \frac{\pi}{4}\right)$
Hence, the given function $f(x)$ is an increasing function in $\left(0, \frac{\pi}{4}\right)$.
Q23. At what point, the slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is maximum ? Also find the maximum slope.
Sol. Given that: $y=-x^{3}+3 x^{2}+9 x-27$
Differentiating both sides w.r.t. x, we get $\frac{d y}{d x}=-3 x^{2}+6 x+9$
Let slope of the cuve $\frac{d y}{d x}=Z$

$$
\therefore \quad z=-3 x^{2}+6 x+9
$$

Differentiating both sides w.r.t. x, we get $\frac{d z}{d x}=-6 x+6$
For local maxima and local minima, $\frac{d z}{d x}=0$

$$
\begin{array}{llrl}
\therefore & -6 x+6 & =0 \Rightarrow & x=1 \\
\Rightarrow & \frac{d^{2} z}{d x^{2}} & =-6<0 & \text { Maxima }
\end{array}
$$

Put $x=1$ in equation of the curve $y=(-1)^{3}+3(1)^{2}+9(1)-27$

$$
=-1+3+9-27=-16
$$

Maximum slope $=-3(1)^{2}+6(1)+9=12$
Hence, $(1,-16)$ is the point at which the slope of the given curve is maximum and maximum slope $=12$.

Q24. Prove that $f(x)=\sin x+\sqrt{3} \cos x$ has maximum value at $x=\frac{\pi}{6}$.
Sol. We have: $f(x)=\sin x+\sqrt{3} \cos x=2\left(\frac{1}{2} \sin x+\frac{\sqrt{3}}{2} \cos x\right)$

$$
\begin{aligned}
& =2\left(\cos \frac{\pi}{3} \sin x+\sin \frac{\pi}{3} \cos x\right)=2 \sin \left(x+\frac{\pi}{3}\right) \\
f^{\prime}(x) & =2 \cos \left(x+\frac{\pi}{3}\right) ; f^{\prime \prime}(x)=-2 \sin \left(x+\frac{\pi}{3}\right) \\
f^{\prime \prime}(x)_{x=\frac{\pi}{6}} & =-2 \sin \left(\frac{\pi}{6}+\frac{\pi}{3}\right) \\
& =-2 \sin \frac{\pi}{2}=-2.1=-2<0 \text { (Maxima) } \\
& =-2 \times \frac{\sqrt{3}}{2}=-\sqrt{3}<0 \text { (Maxima) }
\end{aligned}
$$

Maximum value of the function at $x=\frac{\pi}{6}$ is

$$
\sin \frac{\pi}{6}+\sqrt{3} \cos \frac{\pi}{6}=\frac{1}{2}+\sqrt{3} \cdot \frac{\sqrt{3}}{2}=2
$$

Hence, the given function has maximum value at $x=\frac{\pi}{6}$ and the maximum value is 2 .

LONG ANSWER TYPE QUESTIONS

Q25. If the sum of the lengths of the hypotenuse and a side of a right angled triangle is given, show that the area of the triangle is maximum when the angle between them is $\frac{\pi}{3}$.
Sol. Let $\triangle \mathrm{ABC}$ be the right angled triangle in which $\angle B=90^{\circ}$ Let $\mathrm{AC}=x, \mathrm{BC}=y$

$$
\begin{aligned}
\therefore & \mathrm{AB} & =\sqrt{x^{2}-y^{2}} \\
& \angle \mathrm{ACB} & =\theta \\
\text { Let } & \mathrm{Z} & =x+y \quad \text { (given) }
\end{aligned}
$$

Now area of $\triangle \mathrm{ABC}, \mathrm{A}=\frac{1}{2} \times \mathrm{AB} \times \mathrm{BC}$

$$
\Rightarrow \mathrm{A}=\frac{1}{2} y \cdot \sqrt{x^{2}-y^{2}} \Rightarrow \mathrm{~A}=\frac{1}{2} y \cdot \sqrt{(Z-y)^{2}-y^{2}}
$$

Squaring both sides, we get

$$
\begin{aligned}
& \mathrm{A}^{2}=\frac{1}{4} y^{2}\left[(\mathrm{Z}-y)^{2}-y^{2}\right] \Rightarrow \mathrm{A}^{2}=\frac{1}{4} y^{2}\left[\mathrm{Z}^{2}+y^{2}-2 \mathrm{Z} y-y^{2}\right] \\
\Rightarrow & \mathrm{P}=\frac{1}{4} y^{2}\left[\mathrm{Z}^{2}-2 \mathrm{Z} y\right] \Rightarrow \mathrm{P}=\frac{1}{4}\left[y^{2} \mathrm{Z}^{2}-2 \mathrm{Z} y^{3}\right] \quad\left[\mathrm{A}^{2}=\mathrm{P}\right]
\end{aligned}
$$

Differentiating both sides w.r.t. y we get

$$
\begin{equation*}
\frac{d P}{d y}=\frac{1}{4}\left[2 y Z^{2}-6 Z y^{2}\right] \tag{i}
\end{equation*}
$$

For local maxima and local minima, $\frac{d \mathrm{P}}{d y}=0$
$\therefore \frac{1}{4}\left(2 y Z^{2}-6 Z y^{2}\right)=0$
$\Rightarrow \quad \frac{2 y Z}{4}(Z-3 y)=0 \Rightarrow y Z(Z-3 y)=0$
$\Rightarrow \quad y Z \neq 0 \quad(\because y \neq 0$ and $Z \neq 0)$
$\therefore \quad Z-3 y=0$
$\Rightarrow \quad y=\frac{Z}{3} \Rightarrow y=\frac{x+y}{3} \quad(\because \quad \mathrm{Z}=x+y)$
$\Rightarrow \quad 3 y=x+y \quad \Rightarrow 3 y-y=x \quad \Rightarrow 2 y=x$
$\Rightarrow \quad \frac{y}{x}=\frac{1}{2} \Rightarrow \cos \theta=\frac{1}{2}$
$\therefore \quad \theta=\frac{\pi}{3}$
Differentiating eq. (i) w.r.t. y, we have $\frac{d^{2} \mathrm{P}}{d y^{2}}=\frac{1}{4}\left[2 \mathrm{Z}^{2}-12 \mathrm{Z} y\right]$

$$
\begin{aligned}
\frac{d^{2} \mathrm{P}}{d y^{2}} \text { at } y=\frac{\mathrm{Z}}{3} & =\frac{1}{4}\left[2 \mathrm{Z}^{2}-12 \mathrm{Z} \cdot \frac{\mathrm{Z}}{3}\right] \\
& =\frac{1}{4}\left[2 \mathrm{Z}^{2}-4 \mathrm{Z}^{2}\right]=\frac{-\mathrm{Z}^{2}}{2}<0 \text { Maxima }
\end{aligned}
$$

Hence, the area of the given triangle is maximum when the angle between its hypotenuse and a side is $\frac{\pi}{3}$.
Q26. Find the points of local maxima, local minima and the points of inflection of the function $f(x)=x^{5}-5 x^{4}+5 x^{3}-1$. Also find the corresponding local maximum and local minimum values.
Sol. We have

$$
f(x)=x^{5}-5 x^{4}+5 x^{3}-1
$$

$\Rightarrow \quad f^{\prime}(x)=5 x^{4}-20 x^{3}+15 x^{2}$
For local maxima and local minima, $f^{\prime}(x)=0$
$\Rightarrow \quad 5 x^{4}-20 x^{3}+15 x^{2}=0 \Rightarrow 5 x^{2}\left(x^{2}-4 x+3\right)=0$
$\Rightarrow 5 x^{2}\left(x^{2}-3 x-x+3\right)=0 \Rightarrow x^{2}(x-3)(x-1)=0$
$\therefore \quad x=0, x=1$ and $x=3$
Now $\quad f^{\prime \prime}(x)=20 x^{3}-60 x^{2}+30 x$
$\Rightarrow \quad f^{\prime \prime}(x)_{\text {at } x=0}=20(0)^{3}-60(0)^{2}+30(0)=0$ which is neither maxima nor minima.
$\therefore \quad f(x)$ has the point of inflection at $x=0$

$$
\begin{aligned}
f^{\prime \prime}(x)_{\mathrm{at} x=1} & =20(1)^{3}-60(1)^{2}+30(1) \\
& =20-60+30=-10<0 \text { Maxima } \\
f^{\prime \prime}(x)_{\mathrm{at} x=3} & =20(3)^{3}-60(3)^{2}+30(3) \\
& =540-540+90=90>0 \text { Minima }
\end{aligned}
$$

The maximum value of the function at $x=1$

$$
\begin{aligned}
f(x) & =(1)^{5}-5(1)^{4}+5(1)^{3}-1 \\
& =1-5+5-1=0
\end{aligned}
$$

The minimum value at $x=3$ is

$$
\begin{aligned}
f(x) & =(3)^{5}-5(3)^{4}+5(3)^{3}-1 \\
& =243-405+135-1=378-406=-28
\end{aligned}
$$

Hence, the function has its maxima at $x=1$ and the maximum value $=0$ and it has minimum value at $\mathrm{x}=3$ and its minimum value is -28 .
$x=0$ is the point of inflection.
Q27. A telephone company in a town has 500 subscribers on its list and collects fixed charges of ₹ 300 per subscriber per year. The company proposes to increase the annual subscription and it is believed that for every increase of ₹ 1.00 , one subscriber will discontinue the service. Find what increase will bring maximum profit?
Sol. Let us consider that the company increases the annual subscription by ₹ x.
So, x is the number of subscribers who discontinue the services.
\therefore Total revenue, $\mathrm{R}(x)=(500-x)(300+x)$

$$
\begin{aligned}
& =150000+500 x-300 x-x^{2} \\
& =-x^{2}+200 x+150000
\end{aligned}
$$

Differentiating both sides w.r.t. x, we get $\mathrm{R}^{\prime}(x)=-2 x+200$
For local maxima and local minima, $\mathrm{R}^{\prime}(x)=0$

$$
\begin{aligned}
-2 x+200 & =0 \quad \Rightarrow \quad x=100 \\
R^{\prime \prime}(x) & =-2
\end{aligned}
$$

So, $\mathrm{R}(x)$ is maximum at $x=100$

Hence, in order to get maximum profit, the company should increase its annual subscription by ₹ 100 .
Q28. If the straight line $x \cos \alpha+y \sin \alpha=p$ touches the curve $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then prove that $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$.
Sol. The given curve is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and the straight line $x \cos \alpha+y \sin \alpha=p$
Differentiating eq. (i) w.r.t. x, we get

$$
\begin{aligned}
& \frac{1}{a^{2}} \cdot 2 x+\frac{1}{b^{2}} \cdot 2 y \cdot \frac{d y}{d x} \\
=\quad \frac{x}{a^{2}}+\frac{y}{b^{2}} \frac{d y}{d x} & =0 \quad \Rightarrow \quad \frac{d y}{d x}=-\frac{b^{2}}{a^{2}} \cdot \frac{x}{y}
\end{aligned}
$$

So the slope of the curve $=\frac{-b^{2}}{a^{2}} \cdot \frac{x}{y}$
Now differentiating eq. (ii) w.r.t. x, we have

$$
\begin{aligned}
& \cos \alpha+\sin \alpha \cdot \frac{d y}{d x} & =0 \\
\therefore & \frac{d y}{d x} & =\frac{-\cos \alpha}{\sin \alpha}=-\cot \alpha
\end{aligned}
$$

So, the slope of the straight line $=-\cot \alpha$
If the line is the tangent to the curve, then

$$
\frac{-b^{2}}{a^{2}} \cdot \frac{x}{y}=-\cot \alpha \Rightarrow \frac{x}{y}=\frac{a^{2}}{b^{2}} \cdot \cot \alpha \Rightarrow x=\frac{a^{2}}{b^{2}} \cot \alpha \cdot y
$$

Now from eq. (ii) we have $x \cos \alpha+y \sin \alpha=p$
$\Rightarrow \quad \frac{a^{2}}{b^{2}} \cdot \cot \alpha \cdot y \cdot \cos \alpha+y \sin \alpha=p$
$\Rightarrow \quad a^{2} \cot \alpha \cdot \cos \alpha y+b^{2} \sin \alpha y=b^{2} p$
$\Rightarrow a^{2} \frac{\cos \alpha}{\sin \alpha} \cdot \cos \alpha y+b^{2} \sin \alpha y=b^{2} p$
$\Rightarrow \quad a^{2} \cos ^{2} \alpha y+b^{2} \sin ^{2} \alpha y=b^{2} \sin \alpha p$
$\Rightarrow \quad a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=\frac{b^{2}}{y} \cdot \sin \alpha \cdot p$
$\begin{array}{ll}\Rightarrow & a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p \cdot p \\ \text { Hence, } & a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}\end{array} \quad\left[\because \frac{b^{2}}{y} \sin \alpha=p\right]$

Alternate method:

We know that $y=m x+c$ will touch the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \text { if } c^{2}=a^{2} m^{2}+b^{2}
$$

Here equation of straight line is $x \cos \alpha+y \sin \alpha=p$ and that of ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
x \cos \alpha+y \sin \alpha=p
$$

$$
\Rightarrow y \sin \alpha=-x \cos \alpha+p
$$

$$
\Rightarrow \quad y=-x \frac{\cos \alpha}{\sin \alpha}+\frac{p}{\sin \alpha} \Rightarrow y=-x \cot \alpha+\frac{p}{\sin \alpha}
$$

Comparing with $y=m x+c$, we get

$$
m=-\cot \alpha \quad \text { and } \quad c=\frac{p}{\sin \alpha}
$$

So, according to the condition, we get $c^{2}=a^{2} m^{2}+b^{2}$

$$
\begin{aligned}
\frac{p^{2}}{\sin ^{2} \alpha} & =a^{2}(-\cot \alpha)^{2}+b^{2} \\
\Rightarrow \quad \frac{p^{2}}{\sin ^{2} \alpha} & =\frac{a^{2} \cos ^{2} \alpha}{\sin ^{2} \alpha}+b^{2} \Rightarrow p^{2}=a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha
\end{aligned}
$$

Hence, $a^{2} \cos ^{2} \alpha+b^{2} \sin ^{2} \alpha=p^{2}$ Hence proved.
Q29. An open box with square base is to be made of a given quantity of card board of area c^{2}. Show that the maximum volume of the box is $\frac{c^{3}}{6 \sqrt{3}}$ cubic units.
Sol. Let x be the length of the side of the square base of the cubical open box and y be its height.
$\therefore \quad$ Surface area of the open box
$c^{2}=x^{2}+4 x y \Rightarrow y=\frac{c^{2}-x^{2}}{4 x}$
Now volume of the box, $\mathrm{V}=x \times x \times y$
$\Rightarrow \quad \mathrm{V}=x^{2} y$
$\Rightarrow \mathrm{V}=x^{2}\left(\frac{c^{2}-x^{2}}{4 x}\right)$

$\Rightarrow \mathrm{V}=\frac{1}{4}\left(c^{2} x-x^{3}\right)$
Differentiating both sides w.r.t. x, we get

$$
\begin{equation*}
\frac{d \mathrm{~V}}{d x}=\frac{1}{4}\left(c^{2}-3 x^{2}\right) \tag{ii}
\end{equation*}
$$

For local maxima and local minima, $\frac{d \mathrm{~V}}{d x}=0$

$$
\left.\begin{array}{rlrl}
& \therefore & \frac{1}{4}\left(c^{2}-3 x^{2}\right)=0 \Rightarrow c^{2}-3 x^{2} & =0 \\
\Rightarrow & & x^{2} & =\frac{c^{2}}{3} \\
& \therefore & & x
\end{array}\right)=\sqrt{\frac{c^{2}}{3}}=\frac{c}{\sqrt{3}}
$$

Now again differentiating eq. (ii) w.r.t. x, we get

$$
\frac{d^{2} \mathrm{~V}}{d x^{2}}=\frac{1}{4}(-6 x)=\frac{-3}{2} \cdot \frac{c}{\sqrt{3}}<0 \quad(\text { maxima })
$$

Volume of the cubical box $(\mathrm{V})=x^{2} y$

$$
=x^{2}\left(\frac{c^{2}-x^{2}}{4 x}\right)=\frac{c}{\sqrt{3}}\left[\frac{c^{2}-\frac{c^{2}}{3}}{4}\right]=\frac{c}{\sqrt{3}} \times \frac{2 c^{2}}{3 \times 4}=\frac{c^{3}}{6 \sqrt{3}}
$$

Hence, the maximum volume of the open box is

$$
\frac{c^{3}}{6 \sqrt{3}} \text { cubic units. }
$$

Q30. Find the dimensions of the rectangle of perimeter 36 cm which will sweep out a volume as large as possible, when revolved about one of its sides. Also find the maximum volume.
Sol. Let x and y be the length and breadth of a given rectangle $A B C D$ as per question, the rectangle be revolved about side AD which will make a cylinder with radius x and
 height y.
$\Rightarrow \quad \mathrm{V}=\pi x^{2} y$
Now perimeter of rectangle $\mathrm{P}=2(x+y) \Rightarrow 36=2(x+y)$
$\Rightarrow \quad x+y=18 \Rightarrow y=18-x$
Putting the value of y in eq. (i) we get

$$
\begin{aligned}
& \mathrm{V}=\pi x^{2}(18-x) \\
& \mathrm{V}=\pi\left(18 x^{2}-x^{3}\right)
\end{aligned}
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{equation*}
\frac{d \mathrm{~V}}{d x}=\pi\left(36 x-3 x^{2}\right) \tag{iii}
\end{equation*}
$$

For local maxima and local minima $\frac{d \mathrm{~V}}{d x}=0$

$$
\begin{array}{rrll}
\therefore & \pi\left(36 x-3 x^{2}\right) & =0 & \Rightarrow 36 x-3 x^{2}=0 \\
\Rightarrow & 3 x(12-x) & =0 & \\
\Rightarrow & x & \neq 0 & \therefore \\
& & 12-x=0 \Rightarrow x=12
\end{array}
$$

From eq. (ii) $y=18-12=6$
Differentiating eq. (iii) w.r.t. x, we get $\frac{d^{2} \mathrm{~V}}{d x^{2}}=\pi(36-6 x)$
at $x=12 \quad \frac{d^{2} \mathrm{~V}}{d x^{2}}=\pi(36-6 \times 12)$

$$
=\pi(36-72)=-36 \pi<0 \text { maxima }
$$

Now volume of the cylinder so formed $=\pi x^{2} y$

$$
=\pi \times(12)^{2} \times 6=\pi \times 144 \times 6=864 \pi \mathrm{~cm}^{3}
$$

Hence, the required dimensions are 12 cm and 6 cm and the maximum volume is $864 \pi \mathrm{~cm}^{3}$.
Q31. If the sum of the surface areas of cube and a sphere is constant, what is the ratio of an edge of the cube to the diameter of the sphere, when the sum of their volumes is minimum?
Sol. Let x be the edge of the cube and r be the radius of the sphere. Surface area of cube $=6 x^{2}$

and surface area of the sphere $=4 \pi r^{2}$

$$
\begin{equation*}
\therefore \quad 6 x^{2}+4 \pi r^{2}=\mathrm{K}(\text { constant }) \Rightarrow r=\sqrt{\frac{\mathrm{K}-6 x^{2}}{4 \pi}} \tag{i}
\end{equation*}
$$

Volume of the cube $=x^{3}$ and the volume of sphere $=\frac{4}{3} \pi r^{3}$
\therefore Sum of their volumes $(\mathrm{V})=$ Volume of cube

+ Volume of sphere

$$
\begin{array}{ll}
\Rightarrow & \mathrm{V}=x^{3}+\frac{4}{3} \pi r^{3} \\
\Rightarrow & \mathrm{~V}=x^{3}+\frac{4}{3} \pi \times\left(\frac{\mathrm{K}-6 x^{2}}{4 \pi}\right)^{3 / 2}
\end{array}
$$

Differentiating both sides w.r.t. x, we get

$$
\frac{d \mathrm{~V}}{d x}=3 x^{2}+\frac{4 \pi}{3} \times \frac{3}{2}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}(-12 x) \times \frac{1}{(4 \pi)^{3 / 2}}
$$

$$
\begin{align*}
& =3 x^{2}+\frac{2 \pi}{(4 \pi)^{3 / 2}} \times(-12 x)\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \\
& =3 x^{2}+\frac{1}{4 \pi^{1 / 2}} \times(-12 x)\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \\
\therefore \quad \frac{d \mathrm{~V}}{d x} & =3 x^{2}-\frac{3 x}{\sqrt{\pi}}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2} \tag{ii}
\end{align*}
$$

For local maxima and local minima, $\frac{d \mathrm{~V}}{d x}=0$

$$
\begin{array}{lr}
\therefore & \quad 3 x^{2}-\frac{3 x}{\sqrt{\pi}}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}=0 \\
\Rightarrow & \quad 3 x\left[x-\frac{\left(\mathrm{K}-6 x^{2}\right)^{1 / 2}}{\sqrt{\pi}}\right]=0 \\
x \neq 0 & \therefore \quad x-\frac{\left(\mathrm{K}-6 x^{2}\right)^{1 / 2}}{\sqrt{\pi}}=0 \\
\Rightarrow & x=\frac{\left(\mathrm{K}-6 x^{2}\right)^{1 / 2}}{\sqrt{\pi}}
\end{array}
$$

Squaring both sides, we get

$$
\begin{array}{rlrl}
x^{2} & =\frac{\mathrm{K}-6 x^{2}}{\pi} \Rightarrow \pi x^{2}=\mathrm{K}-6 x^{2} \\
& & & \pi x^{2}+6 x^{2}
\end{array}=\mathrm{K} \Rightarrow x^{2}(\pi+6)=\mathrm{K} \quad \Rightarrow x^{2}=\frac{\mathrm{K}}{\pi+6}
$$

Now putting the value of K in eq. (i), we get

$$
\begin{aligned}
& & 6 x^{2}+4 \pi r^{2} & =x^{2}(\pi+6) \\
\Rightarrow & & 6 x^{2}+4 \pi r^{2} & =\pi x^{2}+6 x^{2} \Rightarrow 4 \pi r^{2}=\pi x^{2} \Rightarrow 4 r^{2}=x^{2} \\
\therefore & & 2 r & =x \\
& \therefore & x: 2 r & =1: 1
\end{aligned}
$$

Now differentiating eq. (ii) w.r.t x, we have

$$
\begin{aligned}
\frac{d^{2} \mathrm{~V}}{d x^{2}} & =6 x-\frac{3}{\sqrt{\pi}} \frac{d}{d x}\left[x\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}\right] \\
& =6 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{1}{2 \sqrt{\mathrm{~K}-6 x^{2}}} \times(-12 x)+\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \cdot 1\right] \\
& =6 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^{2}}{\sqrt{\mathrm{~K}-6 x^{2}}}+\sqrt{\mathrm{K}-6 x^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =6 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^{2}+\mathrm{K}-6 x^{2}}{\sqrt{\mathrm{~K}-6 x^{2}}}\right]=6 x+\frac{3}{\sqrt{\pi}}\left[\frac{12 x^{2}-\mathrm{K}}{\sqrt{\mathrm{~K}-x^{2}}}\right] \\
x & =\sqrt{\frac{\mathrm{K}}{\pi+6}}=6 \sqrt{\frac{\mathrm{~K}}{\pi+6}}+\frac{3}{\sqrt{\pi}}\left[\frac{\frac{12 \mathrm{~K}}{\pi+6}-\mathrm{K}}{\sqrt{\mathrm{~K}-\frac{6 \mathrm{~K}}{\pi+6}}}\right] \\
& =6 \sqrt{\frac{\mathrm{~K}}{\pi+6}}+\frac{3}{\sqrt{\pi}}\left[\frac{12 \mathrm{~K}-\pi \mathrm{K}-6 \mathrm{~K}}{\sqrt{\frac{\pi \mathrm{~K}+6 \mathrm{~K}-6 \mathrm{~K}}{\pi+6}}}\right] \\
& =6 \sqrt{\frac{\mathrm{~K}}{\pi+6}}+\frac{3}{\sqrt{\pi}}\left[\frac{6 \mathrm{~K}-\pi \mathrm{K}}{\left.\sqrt{\frac{\pi \mathrm{~K}}{\pi+6}}\right]}\right. \\
& =6 \sqrt{\frac{\mathrm{~K}}{\pi+6}}+\frac{3}{\pi \sqrt{K}}[(6 \mathrm{~K}-\pi \mathrm{K}) \sqrt{\pi+6}]>0
\end{aligned}
$$

So it is minima.
Hence, the required ratio is $1: 1$ when the combined volume is minimum.

Q32. AB is a diameter of a circle and C is any point on the circle. Show that the area of $\triangle \mathrm{ABC}$ is maximum, when it is isosceles.
Sol. Let $A B$ be the diameter and C be any point on the circle with radius r.
$\angle \mathrm{ACB}=90^{\circ}$ [angle in the semi circle is 90°]
Let $\mathrm{AC}=x$

$\therefore \quad \mathrm{BC}=\sqrt{\mathrm{AB}^{2}-\mathrm{AC}^{2}}$
$\Rightarrow \mathrm{BC}=\sqrt{(2 r)^{2}-x^{2}} \Rightarrow \mathrm{BC}=\sqrt{4 r^{2}-x^{2}}$
Now area of $\triangle \mathrm{ABC}, \mathrm{A}=\frac{1}{2} \times \mathrm{AC} \times \mathrm{BC}$

$$
\Rightarrow \quad \mathrm{A}=\frac{1}{2} x \cdot \sqrt{4 r^{2}-x^{2}}
$$

Squaring both sides, we get

$$
\mathrm{A}^{2}=\frac{1}{4} x^{2}\left(4 r^{2}-x^{2}\right)
$$

Let $A^{2}=Z$
$\therefore \quad \mathrm{Z}=\frac{1}{4} x^{2}\left(4 r^{2}-x^{2}\right) \quad \Rightarrow \mathrm{Z}=\frac{1}{4}\left(4 x^{2} r^{2}-x^{4}\right)$

Differentiating both sides w.r.t. x, we get

$$
\begin{equation*}
\frac{d \mathrm{Z}}{d x}=\frac{1}{4}\left[8 x r^{2}-4 x^{3}\right] \tag{ii}
\end{equation*}
$$

For local maxima and local minima $\frac{d \mathrm{Z}}{d x}=0$
$\therefore \quad \frac{1}{4}\left[8 x r^{2}-4 x^{3}\right]=0 \Rightarrow x\left[2 r^{2}-x^{2}\right]=0$
$x \neq 0 \quad \therefore \quad 2 r^{2}-x^{2}=0$
$\Rightarrow \quad x^{2}=2 r^{2} \Rightarrow x=\sqrt{2} r=\mathrm{AC}$
Now from eq. (i) we have

$$
\mathrm{BC}=\sqrt{4 r^{2}-2 r^{2}} \Rightarrow \mathrm{BC}=\sqrt{2 r^{2}} \Rightarrow \mathrm{BC}=\sqrt{2} r
$$

So $\quad \mathrm{AC}=\mathrm{BC}$
Hence, $\triangle \mathrm{ABC}$ is an isosceles triangle.
Differentiating eq. (ii) w.r.t. x, we get $\frac{d^{2} Z}{d x^{2}}=\frac{1}{4}\left[8 r^{2}-12 x^{2}\right]$
Put $x=\sqrt{2} r$

$$
\begin{aligned}
\therefore \quad \frac{d^{2} Z}{d x^{2}} & =\frac{1}{4}\left[8 r^{2}-12 \times 2 r^{2}\right]=\frac{1}{4}\left[8 r^{2}-24 r^{2}\right] \\
& =\frac{1}{4} \times\left(-16 r^{2}\right)=-4 r^{2}<0 \quad \text { maxima }
\end{aligned}
$$

Hence, the area of $\triangle \mathrm{ABC}$ is maximum when it is an isosceles triangle.
Q33. A metal box with a square base and vertical sides is to contain $1024 \mathrm{~cm}^{3}$. The material for the top and botttom costs ₹ $5 / \mathrm{cm}^{2}$ and the material for the sides costs $₹ 2.50 / \mathrm{cm}^{2}$. Find the least cost of the box.
Sol. Let x be the side of the square base and y be the length of the vertical sides.
Area of the base and bottom $=2 x^{2} \mathrm{~cm}^{2}$
\therefore Cost of the material required $=₹ 5 \times 2 x^{2}$

$$
=₹ 10 x^{2}
$$

Area of the 4 sides $=4 x y \mathrm{~cm}^{2}$

$\therefore \quad$ Cost of the material for the four sides

$$
\begin{equation*}
=₹ 2.50 \times 4 x y=₹ 10 x y \tag{i}
\end{equation*}
$$

Total cost $\quad \mathrm{C}=10 x^{2}+10 x y$
New volume of the box $=x \times x \times y$

$$
\begin{array}{lr}
\Rightarrow & 1024=x^{2} y \\
\therefore & y=\frac{1024}{x^{2}} \tag{ii}
\end{array}
$$

Putting the value of y in eq. (i) we get

$$
C=10 x^{2}+10 x \times \frac{1024}{x^{2}} \Rightarrow C=10 x^{2}+\frac{10240}{x}
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{equation*}
\frac{d \mathrm{C}}{d x}=20 x-\frac{10240}{x^{2}} \tag{iii}
\end{equation*}
$$

For local maxima and local minima $\frac{d \mathrm{C}}{d x}=0$

$$
\begin{aligned}
20-\frac{10240}{x^{2}} & =0 \\
\Rightarrow \quad 20 x^{3}-10240 & =0 \quad \Rightarrow x^{3}=512 \quad \Rightarrow \quad x=8 \mathrm{~cm}
\end{aligned}
$$

Now from eq. (ii)

$$
y=\frac{10240}{(8)^{2}}=\frac{10240}{64}=16 \mathrm{~cm}
$$

\therefore Cost of material used $C=10 x^{2}+10 x y$

$$
=10 \times 8 \times 8+10 \times 8 \times 16=640+1280=1920
$$

Now differentiating eq. (iii) we get

$$
\frac{d^{2} \mathrm{C}}{d x^{2}}=20+\frac{20480}{x^{3}}
$$

Put $x=8$

$$
=20+\frac{20480}{(8)^{3}}=20+\frac{20480}{512}=20+40=60>0 \text { minima }
$$

Hence, the required cost is ₹ 1920 which is the minimum.
Q34. The sum of the surface areas of a rectangular parallelopiped with sides $x, 2 x$ and $\frac{x}{3}$ and a sphere is given to be constant. Prove that the sum of their volumes is minimum, if x is equal to three times the radius of the sphere. Also find the minimum value of the sum of their volumes.
Sol. Let ' r ' be the radius of the sphere.
$\therefore \quad$ Surface area of the sphere $=4 \pi r^{2}$
Volume of the sphere $=\frac{4}{3} \pi r^{3}$
The sides of the parallelopiped are $x, 2 x$ and $\frac{x}{3}$
$\therefore \quad$ Its surface area $=2\left[x \times 2 x+2 x \times \frac{x}{3}+x \times \frac{x}{3}\right]$

$$
\begin{aligned}
& =2\left[2 x^{2}+\frac{2 x^{2}}{3}+\frac{x^{2}}{3}\right]=2\left[2 x^{2}+x^{2}\right] \\
& =2\left[3 x^{2}\right]=6 x^{2}
\end{aligned}
$$

Volume of the parallelopiped $=x \times 2 x \times \frac{x}{3}=\frac{2}{3} x^{3}$
As per the conditions of the question,
Surface area of the parallelopiped

+ Surface area of the sphere $=$ constant
$\Rightarrow \quad 6 x^{2}+4 \pi r^{2}=\mathrm{K}($ constant $) \quad \Rightarrow 4 \pi r^{2}=\mathrm{K}-6 x^{2}$
$\therefore \quad r^{2}=\frac{\mathrm{K}-6 x^{2}}{4 \pi}$
Now let $\quad V=$ Volume of parallelopiped + Volume of the sphere
$\Rightarrow \quad \mathrm{V}=\frac{2}{3} x^{3}+\frac{4}{3} \pi r^{3}$
$\Rightarrow \quad \mathrm{V}=\frac{2}{3} x^{3}+\frac{4}{3} \pi\left[\frac{\mathrm{~K}-6 x^{2}}{4 \pi}\right]^{3 / 2}$
[from eq. (i)]
$\Rightarrow \quad \mathrm{V}=\frac{2}{3} x^{3}+\frac{4}{3} \pi \times \frac{1}{(4)^{3 / 2} \pi^{3 / 2}}\left[\mathrm{~K}-6 x^{2}\right]^{3 / 2}$
$\Rightarrow \quad \mathrm{V}=\frac{2}{3} x^{3}+\frac{4}{3} \pi \times \frac{1}{8 \times \pi^{3 / 2}}\left[\mathrm{~K}-6 x^{2}\right]^{3 / 2}$
$\Rightarrow \quad=\frac{2}{3} x^{3}+\frac{1}{6 \sqrt{\pi}}\left[\mathrm{~K}-6 x^{2}\right]^{3 / 2}$
Differentiating both sides w.r.t. x, we have

$$
\begin{aligned}
\frac{d \mathrm{~V}}{d x} & =\frac{2}{3} \cdot 3 x^{2}+\frac{1}{6 \sqrt{\pi}}\left[\frac{3}{2}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}(-12 x)\right] \\
& =2 x^{2}+\frac{1}{6 \sqrt{\pi}} \times \frac{3}{2} \times(-12 x)\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \\
& =2 x^{2}-\frac{3 x}{\sqrt{\pi}}\left[\mathrm{~K}-6 x^{2}\right)^{1 / 2}
\end{aligned}
$$

For local maxima and local minima, we have $\frac{d \mathrm{~V}}{d x}=0$

$$
\begin{array}{ll}
\therefore & 2 x^{2}-\frac{3 x}{\sqrt{\pi}}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}=0 \\
\Rightarrow & 2 \sqrt{\pi} x^{2}-3 x\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}=0 \\
\Rightarrow & x\left[2 \sqrt{\pi} x-3\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}\right]=0
\end{array}
$$

Here $x \neq 0$ and $2 \sqrt{\pi} x-3\left(K-6 x^{2}\right)^{1 / 2}=0$

$$
\Rightarrow \quad 2 \sqrt{\pi} x=3\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}
$$

Squaring both sides, we get

$$
4 \pi x^{2}=9\left(\mathrm{~K}-6 x^{2}\right) \Rightarrow 4 \pi x^{2}=9 \mathrm{~K}-54 x^{2}
$$

$$
\begin{array}{lr}
\Rightarrow & 4 \pi x^{2}+54 x^{2}=9 \mathrm{~K} \\
\Rightarrow & \mathrm{~K}=\frac{4 \pi x^{2}+54 x^{2}}{9} \tag{ii}\\
\Rightarrow & 2 x^{2}(2 \pi+27)=9 \mathrm{~K} \\
\therefore & x^{2}=\frac{9 \mathrm{~K}}{2(2 \pi+27)}=3 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}} \\
\text { Now from eq. (i) we have }
\end{array}
$$

$$
\begin{array}{ll}
& r^{2}=\frac{\mathrm{K}-6 x^{2}}{4 \pi} \\
\Rightarrow & r^{2}=\frac{\frac{4 \pi x^{2}+54 x^{2}}{9}-6 x^{2}}{4 \pi} \\
\Rightarrow \quad & r^{2}=\frac{4 \pi x^{2}+54 x^{2}-54 x^{2}}{9 \times 4 \pi}=\frac{4 \pi x^{2}}{9 \times 4 \pi} \\
\Rightarrow \quad & r^{2}=\frac{x^{2}}{9} \Rightarrow r=\frac{x}{3} \quad \therefore x=3 r
\end{array}
$$

Now we have $\quad \frac{d \mathrm{~V}}{d x}=2 x^{2}-\frac{3 x}{\sqrt{\pi}}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}$
Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
\frac{d^{2} \mathrm{~V}}{d x^{2}} & =4 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{d}{d x}\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}+\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \cdot \frac{d}{d x} \cdot x\right] \\
& =4 x-\frac{3}{\sqrt{\pi}}\left[x \cdot \frac{1 \times(-12 x)}{2 \sqrt{\mathrm{~K}-6 x^{2}}}+\left(\mathrm{K}-6 x^{2}\right)^{1 / 2} \cdot 1\right] \\
& =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^{2}}{\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}}+\left(\mathrm{K}-6 x^{2}\right)^{1 / 2}\right] \\
& =4 x-\frac{3}{\sqrt{\pi}}\left[\frac{-6 x^{2}+\mathrm{K}-6 x^{2}}{\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}}\right]=4 x-\frac{3}{\sqrt{\pi}}\left[\frac{\mathrm{~K}-12 x^{2}}{\left(\mathrm{~K}-6 x^{2}\right)^{1 / 2}}\right]
\end{aligned}
$$

Put $\quad x=3 \cdot \sqrt{\frac{K}{4 \pi+54}}$

$$
\frac{d^{2} V}{d x^{2}}=4 \cdot 3 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{\mathrm{~K}-12 \cdot \frac{9 \mathrm{~K}}{4 \pi+54}}{\sqrt{\left(\mathrm{~K}-6 \cdot \frac{9 \mathrm{~K}}{4 \pi+54}\right)}}\right]
$$

$$
\begin{aligned}
& =12 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}-\frac{3}{\sqrt{\pi}} \frac{\frac{4 \mathrm{~K} \pi+54 \mathrm{~K}-108 \mathrm{~K}}{4 \pi+54}}{\sqrt{\frac{4 \mathrm{~K} \mathrm{\pi}+54 \mathrm{~K}-54 \mathrm{~K}}{4 \pi+54}}} \\
& =12 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{\frac{4 \mathrm{~K} \mathrm{\pi}-54 \mathrm{~K}}{4 \pi+54}}{\sqrt{\frac{4 \mathrm{~K} \pi}{4 \pi+54}}}\right] \\
& =12 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}-\frac{3}{\sqrt{\pi}}\left[\frac{4 \mathrm{~K} \pi-54 \mathrm{~K}}{\sqrt{4 \mathrm{~K} \pi} \cdot \sqrt{4 \pi+54}}\right] \\
& =12 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}-\frac{6 \mathrm{~K}}{\sqrt{\pi}}\left(\frac{2 \pi-27}{\sqrt{4 \mathrm{~K} \pi} \cdot \sqrt{4 \pi+54}}\right) \\
& =12 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}+\frac{6 \mathrm{~K}}{\sqrt{\pi}}\left[\frac{27-2 \pi}{\sqrt{4 k \pi} \cdot \sqrt{4 \pi+54}}\right]>0
\end{aligned}
$$

$$
\left[\begin{array}{ll}
\because & 27-2 \pi>0]
\end{array}\right.
$$

$\therefore \quad \frac{d^{2} V}{d x^{2}}>0 \quad$ so, it is minima.
$\quad d x^{2}$
Hence, the sum of volume is minimum for $x=3 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}$
\therefore Minimum volume,

$$
\text { V at } \begin{aligned}
\left(x=3 \sqrt{\frac{\mathrm{~K}}{4 \pi+54}}\right) & =\frac{2}{3} x^{3}+\frac{4}{3} \pi r^{3}=\frac{2}{3} x^{3}+\frac{4}{3} \pi \cdot\left(\frac{x}{3}\right)^{3} \\
& =\frac{2}{3} x^{3}+\frac{4}{3} \pi \cdot \frac{x^{3}}{27}=\frac{2}{3} x^{3}+\frac{4}{81} \pi x^{3} \\
& =\frac{2}{3} x^{3}\left(1+\frac{2 \pi}{27}\right)
\end{aligned}
$$

Hence, the required minimum volume is $\frac{2}{3} x^{3}\left(1+\frac{2 \pi}{27}\right)$ and
$x=3 r$.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given four options in each of the following questions 35 to 59:

Q35. The sides of an equilateral triangle are increasing at the rate of $2 \mathrm{~cm} / \mathrm{sec}$. The rate at which the area increases, when side is 10 cm is:
(a) $10 \mathrm{~cm}^{2} / \mathrm{s}$
(b) $\sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(c) $10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{s}$
(d) $\frac{10}{3} \mathrm{~cm}^{2} / \mathrm{s}$

Sol. Let the length of each side of the given equilateral triangle be $x \mathrm{~cm}$.
$\therefore \quad \frac{d x}{d t}=2 \mathrm{~cm} / \mathrm{sec}$
Area of equilateral triangle $\mathrm{A}=\frac{\sqrt{3}}{4} x^{2}$
$\therefore \quad \frac{d \mathrm{~A}}{d t}=\frac{\sqrt{3}}{4} \cdot 2 x \cdot \frac{d x}{d t}=\frac{\sqrt{3}}{2} \times 10 \times 2=10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec}$
Hence, the rate of increasing of area $=10 \sqrt{3} \mathrm{~cm}^{2} / \mathrm{sec}$.
Hence, the correct option is (c).
Q36. Aladder, 5 m long, standing on a horizontal floor, leans against a vertical wall. If the top of the ladder slides downwards at the rate of $10 \mathrm{~cm} / \mathrm{sec}$, then the rate at which the angle between the floor and the ladder is decreasing when lower end of ladder is 2 metres from the wall is:
(a) $\frac{1}{10}$ radian $/ \mathrm{sec}$
(b) $\frac{1}{20}$ radian $/ \mathrm{sec}$
(c) 20 radian $/ \mathrm{sec}$
(d) 10 radian $/ \mathrm{sec}$

Sol. Length of ladder $=5 \mathrm{~m}$
Let $\mathrm{AB}=y \mathrm{~m}$ and $\mathrm{BC}=x \mathrm{~m}$
\therefore In right $\triangle \mathrm{ABC}$,

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{BC}^{2} & =\mathrm{AC}^{2} \\
\Rightarrow \quad x^{2}+y^{2} & =(5)^{2} \Rightarrow x^{2}+y^{2}=25
\end{aligned}
$$

Differentiating both sides w.r.t x, we have

$$
\begin{array}{rlrl}
& & 2 x \cdot \frac{d x}{d t}+2 y \cdot \frac{d y}{d t} & =0 \\
& \Rightarrow & x \frac{d x}{d t}+y \cdot \frac{d y}{d t} & =0 \\
\Rightarrow & 2 \cdot \frac{d x}{d t}+y \times(-0.1) & =0 & \\
\Rightarrow & & 2 \cdot \frac{d x}{d t}+\sqrt{25-x^{2}} \times(-0.1) & =0 \\
\Rightarrow & 2 \cdot \frac{d x}{d t}+\sqrt{25-4} \times(-0.1) & =0 \\
\Rightarrow & & 2 \cdot \frac{d x}{d t}-\frac{\sqrt{21}}{10} & =0 \Rightarrow \frac{d x}{d t}=\frac{\sqrt{21}}{20}
\end{array}
$$

$$
\begin{array}{lll}
\text { Now } & \cos \theta=\frac{\mathrm{BC}}{\mathrm{AC}} & (\theta \text { is in radian }) \\
\Rightarrow & \cos \theta=\frac{x}{5} &
\end{array}
$$

Differentiating both sides w.r.t. t, we get

$$
\begin{aligned}
\frac{d}{d t} \cos \theta & =\frac{1}{5} \cdot \frac{d x}{d t} \Rightarrow-\sin \theta \cdot \frac{d \theta}{d t}=\frac{1}{5} \cdot \frac{\sqrt{21}}{20} \\
\Rightarrow \quad \frac{d \theta}{d t} & =\frac{\sqrt{21}}{100} \times\left(-\frac{1}{\sin \theta}\right)=\frac{\sqrt{21}}{100} \times-\left(\frac{1}{\left.\frac{\mathrm{AB}}{\mathrm{AC}}\right)}\right. \\
& =-\frac{\sqrt{21}}{100} \times \frac{\mathrm{AC}}{\mathrm{AB}}=-\frac{\sqrt{21}}{100} \times \frac{5}{\sqrt{21}}=-\frac{1}{20} \mathrm{radian} / \mathrm{sec}
\end{aligned}
$$

[(-) sign shows the decrease of change of angle]
Hence, the required rate $=\frac{1}{20}$ radian $/ \mathrm{sec}$
Hence, the correct option is (b).
Q37. The curve $y=x^{1 / 5}$ has at $(0,0)$
(a) a vertical tangent (parallel to y-axis)
(b) a horizontal tangent (parallel to x-axis)
(c) an oblique tangent
(d) no tangent

Sol. Equation of curve is $y=x^{1 / 5}$
Differentiating w.r.t. x, we get $\frac{d y}{d x}=\frac{1}{5} x^{-4 / 5}$
(at $x=0$)

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{1}{5}(0)^{-4 / 5}=\frac{1}{5} \times \frac{1}{0}=\infty \\
& \frac{d y}{d x}=\infty
\end{aligned}
$$

$\therefore \quad$ The tangent is parallel to y-axis.
Hence, the correct option is (a).
Q38. The equation of normal to the curve $3 x^{2}-y^{2}=8$ which is parallel to the line $x+3 y=8$ is
(a) $3 x-y=8$
(b) $3 x+y+8=0$
(c) $x+3 y \pm 8=0$
(d) $x+3 y=0$

Sol. Given equation of the curve is $3 x^{2}-y^{2}=8$
Differentiating both sides w.r.t. x, we get

$$
6 x-2 y \cdot \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=\frac{3 x}{y}
$$

$\frac{3 x}{y}$ is the slope of the tangent
$\therefore \quad$ Slope of the normal $=\frac{-1}{d y / d x}=\frac{-y}{3 x}$
Now $x+3 y=8$ is parallel to the normal
Differentiating both sides w.r.t. x, we have

$$
\begin{array}{rlrl}
1+3 \frac{d y}{d x}=0 & \Rightarrow \frac{d y}{d x}=-\frac{1}{3} \\
\therefore & \frac{-y}{3 x}=-\frac{1}{3} & \Rightarrow y=x
\end{array}
$$

Putting $y=x$ in eq. (i) we get

$$
3 x^{2}-x^{2}=8 \quad \Rightarrow \quad 2 x^{2}=8 \quad \Rightarrow \quad x^{2}=4
$$

$\therefore \quad x= \pm 2$ and $y= \pm 2$
So the points are $(2,2)$ and $(-2,-2)$.
Equation of normal to the given curve at $(2,2)$ is

$$
\begin{aligned}
y-2 & =-\frac{1}{3}(x-2) \\
\Rightarrow \quad 3 y-6 & =-x+2 \Rightarrow x+3 y-8=0
\end{aligned}
$$

Equation of normal at $(-2,-2)$ is

$$
\begin{aligned}
y+2 & =-\frac{1}{3}(x+2) \\
\Rightarrow \quad 3 y+6 & =-x-2 \Rightarrow x+3 y+8=0
\end{aligned}
$$

\therefore The equations of the normals to the curve are

$$
x+3 y \pm 8=0
$$

Hence, the correct option is (c).
Q39. If the curve $a y+x^{2}=7$ and $x^{3}=y$, cut orthogonally at $(1,1)$, then the value of ' a ' is:
(a) 1
(b) 0
(c) -6
(d) 6

Sol. Equation of the given curves are $a y+x^{2}=7$

$$
\text { and } \quad x^{3}=y
$$

Differentiating eq. (i) w.r.t. x, we have

$$
\begin{aligned}
& a \frac{d y}{d x}+2 x=0 \Rightarrow \\
& \therefore \quad m_{1}=-\frac{d y}{d x}=-\frac{2 x}{a} \\
& \therefore \quad
\end{aligned} \quad\left(m_{1}=\frac{d y}{d x}\right)
$$

Now differentiating eq. (ii) w.r.t. x, we get

$$
3 x^{2}=\frac{d y}{d x} \Rightarrow \quad m_{2}=3 x^{2} \quad\left(m_{2}=\frac{d y}{d x}\right)
$$

The two curves are said to be orthogonal if the angle between the tangents at the point of intersection is 90°.
$\therefore \quad m_{1} \times m_{2}=-1$
$\Rightarrow \frac{-2 x}{a} \times 3 x^{2}=-1 \Rightarrow \frac{-6 x^{3}}{a}=-1 \Rightarrow 6 x^{3}=a$
$(1,1)$ is the point of intersection of two curves.

$$
\begin{aligned}
\therefore & 6(1)^{3} & =a \\
\text { So } & a & =6
\end{aligned}
$$

Hence, the correct option is (d).
Q40. If $y=x^{4}-10$ and if x changes from 2 to 1.99 , what is the change in y ?
(a) 0.32
(b) 0.032
(c) 5.68
(d) 5.968

Sol. Given that $y=x^{4}-10$

$$
\begin{aligned}
\frac{d y}{d x} & =4 x^{3} \\
\Delta x & =2.00-1.99=0.01 \\
\therefore \quad \Delta y & =\frac{d y}{d x} \cdot \Delta x=4 x^{3} \times \Delta x \\
& =4 \times(2)^{3} \times 0.01=32 \times 0.01=0.32
\end{aligned}
$$

Hence, the correct option is (a).
Q41. The equation of tangent to the curve $y\left(1+x^{2}\right)=2-x$, where it crosses x-axis is:
(a) $x+5 y=2$
(b) $x-5 y=2$
(c) $5 x-y=2$
(d) $5 x+y=2$

Sol. Given that $y\left(1+x^{2}\right)=2-x$
If it cuts x-axis, then y-coordinate is 0 .
$\therefore \quad 0\left(1+x^{2}\right)=2-x \Rightarrow x=2$
Put $x=2$ in equation (i)

$$
y(1+4)=2-2 \Rightarrow y(5)=0 \Rightarrow y=0
$$

Point of contact $=(2,0)$
Differentiating eq. (i) w.r.t. x, we have

$$
\begin{aligned}
& y \times 2 x+\left(1+x^{2}\right) \frac{d y}{d x}=-1 \\
\Rightarrow & 2 x y+\left(1+x^{2}\right) \frac{d y}{d x}=-1 \Rightarrow\left(1+x^{2}\right) \frac{d y}{d x}=-1-2 x y \\
\therefore & \frac{d y}{d x}=\frac{-(1+2 x y)}{\left(1+x^{2}\right)} \Rightarrow \frac{d y}{d x}=\frac{-1}{(1+4)}=\frac{-1}{5}
\end{aligned}
$$

Equation of tangent is $y-0=-\frac{1}{5}(x-2)$
$\Rightarrow \quad 5 y=-x+2 \Rightarrow x+5 y=2$
Hence, the correct option is (a).

Q42. The points at which the tangents to the curve $y=x^{3}-12 x+18$ are parallel to x-axis are:
(a) $(2,-2),(-2,-34)$
(b) $(2,34),(-2,0)$
(c) $(0,34),(-2,0)$
(d) $(2,2),(-2,34)$

Sol. Given that $\mathrm{y}=x^{3}-12 x+18$
Differentiating both sides w.r.t. x, we have

$$
\Rightarrow \quad \frac{d y}{d x}=3 x^{2}-12
$$

Since the tangents are parallel to x-axis, then $\frac{d y}{d x}=0$
$\therefore \quad 3 x^{2}-12=0 \Rightarrow x= \pm 2$

$$
\begin{array}{lrl}
\therefore & y_{x=2} & =(2)^{3}-12(2)+18=8-24+18=2 \\
y_{x=-2} & =(-2)^{3}-12(-2)+18=-8+24+18=34
\end{array}
$$

$\therefore \quad$ Points are $(2,2)$ and $(-2,34)$
Hence, the correct option is (d).
Q43. The tangent to the curve $y=e^{2 x}$ at the point $(0,1)$ meets x-axis at:
(a) $(0,1)$
(b) $\left(-\frac{1}{2}, 0\right)$
(c) $(2,0)$
(d) $(0,2)$

Sol. Equation of the curve is $y=e^{2 x}$
Slope of the tangent $\frac{d y}{d x}=2 e^{2 x} \Rightarrow \frac{d y}{d x_{(0,1)}}=2 \cdot e^{0}=2$
$\therefore \quad$ Equation of tangent to the curve at $(0,1)$ is

$$
\Rightarrow \begin{aligned}
y-1 & =2(x-0) \\
y-1 & =2 x \Rightarrow y-2 x=1
\end{aligned}
$$

Since the tangent meets x-axis where $y=0$

$$
\therefore \quad 0-2 x=1 \quad \Rightarrow \quad x=\frac{-1}{2}
$$

So the point is $\left(-\frac{1}{2}, 0\right)$
Hence, the correct option is (b).
Q44. The slope of tangent to the curve $x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$ at the point $(2,-1)$ is:
(a) $\frac{22}{7}$
(b) $\frac{6}{7}$
(c) $-\frac{6}{7}$
(d) -6

Sol. The given curve is $x=t^{2}+3 t-8$ and $y=2 t^{2}-2 t-5$

$$
\begin{aligned}
& \frac{d x}{d t}=2 t+3 \text { and } \frac{d y}{d t}=4 t-2 \\
\therefore \quad & \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{4 t-2}{2 t+3}
\end{aligned}
$$

Now $(2,-1)$ lies on the curve

$$
\begin{array}{rlrl}
\therefore & 2=t^{2}+3 t-8 & \Rightarrow t^{2}+3 t-10=0 \\
& & \Rightarrow t^{2}+5 t-2 t-10=0 \\
& \Rightarrow \quad t(t+5)-2(t+5)=0 \\
& & \Rightarrow(t+5)(t-2)=0 \\
& \therefore t=2, t=-5 \text { and }-1 & =2 t^{2}-2 t-5 \\
\Rightarrow & 2 t^{2}-2 t-4 & =0 \\
\Rightarrow & t^{2}-t-2 & =0 \Rightarrow t^{2}-2 t+t-2=0 \\
\Rightarrow & t(t-2)+1(t-2) & =0 \Rightarrow(t+1)(t-2)=0 \\
\Rightarrow & & =-1 \quad \text { and } t=2
\end{array}
$$

So $t=2$ is common value

$$
\therefore \quad \text { Slope } \frac{d y}{d x_{x=2}}=\frac{4 \times 2-2}{2 \times 2+3}=\frac{6}{7}
$$

Hence, the correct option is (b).
Q45. The two curves $x^{3}-3 x y^{2}+2=0$ and $3 x^{2} y-y^{3}-2=0$ intersect at an angle of:
(a) $\frac{\pi}{4}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{2}$
(d) $\frac{\pi}{6}$

Sol. The given curves are $x^{3}-3 x y^{2}+2=0$ and

$$
\begin{equation*}
3 x^{2} y-y^{3}-2=0 \tag{i}
\end{equation*}
$$

Differentiating eq. (i) w.r.t. x, we get

$$
\begin{array}{rlrl}
& \quad 3 x^{2}-3\left(x \cdot 2 y \frac{d y}{d x}+y^{2} \cdot 1\right) & =0 \\
\Rightarrow \quad x^{2}-2 x y \frac{d y}{d x}-y^{2} & =0 \Rightarrow 2 x y \frac{d y}{d x}=x^{2}-y^{2} \\
\therefore \quad \frac{d y}{d x} & =\frac{x^{2}-y^{2}}{2 x y} \\
& \text { So slope of the curve } & m_{1} & =\frac{x^{2}-y^{2}}{2 x y}
\end{array}
$$

Differentiating eq. (ii) w.r.t. x, we get

$$
\begin{aligned}
3\left[x^{2} \frac{d y}{d x}+y \cdot 2 x\right]-3 y^{2} \cdot \frac{d y}{d x} & =0 \\
x^{2} \frac{d y}{d x}+2 x y-y^{2} \frac{d y}{d x} & =0 \Rightarrow\left(x^{2}-y^{2}\right) \frac{d y}{d x}=-2 x y \\
\therefore \quad \frac{d y}{d x} & =\frac{-2 x y}{x^{2}-y^{2}}
\end{aligned}
$$

So the slope of the curve $m_{2}=\frac{-2 x y}{x^{2}-y^{2}}$
Now

$$
m_{1} \times m_{2}=\frac{x^{2}-y^{2}}{2 x y} \times \frac{-2 x y}{x^{2}-y^{2}}=-1
$$

So the angle between the curves is $\frac{\pi}{2}$.
Hence, the correct option is (c).
Q46. The interval on which the function $f(x)=2 x^{3}+9 x^{2}+12 x-1$ is decreasing is:
(a) $[-1, \infty)$
(b) $[-2,-1]$
(c) $(-\infty,-2]$
(d) $[-1,1]$

Sol. The given function is $f(x)=2 x^{3}+9 x^{2}+12 x-1$

$$
f^{\prime}(x)=6 x^{2}+18 x+12
$$

For increasing and decreasing $f^{\prime}(x)=0$

$$
\begin{array}{rlrl}
\therefore & & 6 x^{2}+18 x+12 & =0 \\
\Rightarrow & x^{2}+3 x+2 & =0 \Rightarrow x^{2}+2 x+x+2=0 \\
\Rightarrow & x(x+2)+1(x+2) & =0 \Rightarrow(x+2)(x+1)=0 \\
\Rightarrow & & x & =-2, x=-1
\end{array}
$$

The possible intervals are $(-\infty,-2),(-2,-1),(-1, \infty)$
Now

$$
f^{\prime}(x)=(x+2)(x+1)
$$

$\Rightarrow \quad f^{\prime}(x)_{(-\infty,-2)}=(-)(-)=(+)$ increasing
$\Rightarrow \quad f^{\prime}(x)_{(-2,-1)}=(+)(-)=(-)$ decreasing
$\Rightarrow \quad f^{\prime}(x)_{(-1, \infty)}=(+)(+)=(+)$ increasing
Hence, the correct option is (b).
Q47. Let the $f: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $f(x)=2 x+\cos x$, then f :
(a) has a minimum at $x=\pi$
(b) has a maximum at $x=0$
(c) is a decreasing function
(d) is an increasing function

Sol. Given that

$$
\begin{aligned}
f(x) & =2 x+\cos x \\
f^{\prime}(x) & =2-\sin x
\end{aligned}
$$

Since $\quad f^{\prime}(x)>0 \forall x$
So $f(x)$ is an increasing function.
Hence, the correct option is (d).
Q48. $y=x(x-3)^{2}$ decreases for the values of x given by:
(a) $1<x<3$
(b) $x<0$
(c) $x>0$
(d) $0<x<\frac{3}{2}$

Sol. Here $y=x(x-3)^{2}$

$$
\frac{d y}{d x}=x \cdot 2(x-3)+(x-3)^{2} \cdot 1 \Rightarrow \frac{d y}{d x}=2 x(x-3)+(x-3)^{2}
$$

For increasing and decreasing $\frac{d y}{d x}=0$
$\therefore \quad 2 x(x-3)+(x-3)^{2}=0 \quad \Rightarrow(x-3)(2 x+x-3)=0$
$\Rightarrow \quad(x-3)(3 x-3)=0 \quad \Rightarrow 3(x-3)(x-1)=0$
$\therefore \quad x=1,3$
$\therefore \quad$ Possible intervals are $(-\infty, 1),(1,3),(3, \infty)$

$$
\frac{d y}{d x}=(x-3)(x-1)
$$

For $(-\infty, 1)=(-)(-)=(+)$ increasing
For $(1,3)=(-)(+)=(-)$ decreasing
For $(3, \infty)=(+)(+)=(+)$ increasing
So the function decreases in $(1,3)$ or $1<x<3$
Hence, the correct option is (a).
Q49. The function $f(x)=4 \sin ^{3} x-6 \sin ^{2} x+12 \sin x+100$ is strictly
(a) increasing in $\left(\pi, \frac{3 \pi}{2}\right)$
(b) decreasing in $\left(\frac{\pi}{2}, \pi\right)$
(c) decreasing in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Here,
(d) decreasing in $\left[0, \frac{\pi}{2}\right]$

$$
\begin{aligned}
f(x) & =4 \sin ^{3} x-6 \sin ^{2} x+12 \sin x+100 \\
f^{\prime}(x) & =12 \sin ^{2} x \cdot \cos x-12 \sin x \cos x+12 \cos x \\
& =12 \cos x\left[\sin ^{2} x-\sin x+1\right] \\
& =12 \cos x\left[\sin ^{2} x+(1-\sin x)\right]
\end{aligned}
$$

$\because \quad 1-\sin x \geq 0$ and $\sin ^{2} x \geq 0$
$\therefore \sin ^{2} x+1-\sin x \geq 0 \quad$ (when $\cos x>0$)
Hence, $f^{\prime}(x)>0$, when $\cos x>0$ i.e., $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$
So, $f(x)$ is increasing where $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ and $f^{\prime}(x)<0$
when $\cos x<0$ i.e. $x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
Hence, $f(x)$ is decreasing when $x \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
As $\left(\frac{\pi}{2}, \pi\right) \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$
So $f(x)$ is decreasing in $\left(\frac{\pi}{2}, \pi\right)$
Hence, the correct option is (b).

Q50. Which of the following functions is decreasing in $\left(0, \frac{\pi}{2}\right)$?
(a) $\sin 2 x$
(b) $\tan x$
(c) $\cos x$
(d) $\cos 3 x$

Sol. Here, Let $\quad f(x)=\cos x$; So, $f^{\prime}(x)=-\sin x$

$$
f^{\prime}(x)<0 \text { in }\left(0, \frac{\pi}{2}\right)
$$

Hence, the correct option is (c).

$$
f(x)=\cos x \text { is decreasing in }\left(0, \frac{\pi}{2}\right)
$$

Q51. The function $f(x)=\tan x-x$
(a) always increases
(b) always decreases
(c) never increases
(d) sometimes increases and sometimes decreases.

Sol. Here,

$$
\begin{aligned}
f(x) & =\tan x-x \quad \text { So, } f^{\prime}(x)=\sec ^{2} x-1 \\
f^{\prime}(x) & >0 \forall x \in \mathrm{R}
\end{aligned}
$$

So $f(x)$ is always increasing
Hence, the correct option is (a).
Q52. If x is real, the minimum value of $x^{2}-8 x+17$ is
(a) -1
(b) 0
(c) 1
(d) 2

Sol. Let

$$
\begin{aligned}
f(x) & =x^{2}-8 x+17 \\
f^{\prime}(x) & =2 x-8
\end{aligned}
$$

For local maxima and local minima, $f^{\prime}(x)=0$

$$
\therefore \quad 2 x-8=0 \quad \Rightarrow \quad x=4
$$

So, $x=4$ is the point of local maxima and local minima.

$$
\begin{aligned}
& f^{\prime \prime}(x) & =2>0 \text { minima at } x=4 \\
\therefore & f(x)_{x=4} & =(4)^{2}-8(4)+17 \\
& & =16-32+17=33-32=1
\end{aligned}
$$

So the minimum value of the function is 1
Hence, the correct option is (c).
Q53. The smallest value of the polynomial $x^{3}-18 x^{2}+96 x$ in $[0,9]$ is:
(a) 126
(b) 0
(c) 135
(d) 160

Sol. Let $\quad f(x)=x^{3}-18 x^{2}+96 x$; So, $f^{\prime}(x)=3 x^{2}-36 x+96$
For local maxima and local minima $f^{\prime}(x)=0$

```
\(\therefore \quad 3 x^{2}-36 x+96=0\)
\(\Rightarrow \quad x^{2}-12 x+32=0 \Rightarrow x^{2}-8 x-4 x+32=0\)
\(\Rightarrow x(x-8)-4(x-8)=0 \Rightarrow(x-8)(x-4)=0\)
\(\therefore \quad x=8,4 \in[0,9]\)
```

So, $x=4,8$ are the points of local maxima and local minima.
Now we will calculate the absolute maxima or absolute minima at $x=0,4,8,9$

$$
\begin{aligned}
\therefore \quad f(x) & =x^{3}-18 x^{2}+96 x \\
f(x)_{x=0} & =0-0+0=0
\end{aligned}
$$

$$
\begin{aligned}
f(x)_{x=4} & =(4)^{3}-18(4)^{2}+96(4) \\
& =64-288+384=448-288=160 \\
f(x)_{x=8} & =(8)^{3}-18(8)^{2}+96(8) \\
& =512-1152+768=1280-1152=128 \\
f(x)_{x=9} & =(9)^{3}-18(9)^{2}+96(9) \\
& =729-1458+864=1593-1458=135
\end{aligned}
$$

So, the absolute minimum value of f is 0 at $x=0$
Hence, the correct option is (b).
Q54. The function $f(x)=2 x^{3}-3 x^{2}-12 x+4$, has
(a) two points of local maximum
(b) two points of local minimum
(c) one maxima and one minima
(d) no maxima or minima

Sol. We have

$$
\begin{aligned}
f(x) & =2 x^{3}-3 x^{2}-12 x+4 \\
f^{\prime}(x) & =6 x^{2}-6 x-12
\end{aligned}
$$

For local maxima and local minima $f^{\prime}(x)=0$
$\begin{array}{lrlrl} & \therefore & 6 x^{2}-6 x-12 & =0 \\ \Rightarrow & x^{2}-x-2 & =0\end{array} \Rightarrow x^{2}-2 x+x-2=0$
$\Rightarrow \quad x(x-2)+1(x-2)=0 \quad \Rightarrow(x+1)(x-2)=0$
$\Rightarrow \quad x=-1,2$ are the points of local maxima and local minima
Now $\quad f^{\prime \prime}(x)=12 x-6$

$$
\begin{aligned}
f^{\prime \prime}(x)_{x=-1} & =12(-1)-6=-12-6=-18<0, \text { maxima } \\
f^{\prime \prime}(x)_{x=2} & =12(2)-6=24-6=18>0 \text { minima }
\end{aligned}
$$

So, the function is maximum at $x=-1$ and minimum at $x=2$ Hence, the correct option is (c).
Q55. The maximum value of $\sin x \cos x$ is
(a) $\frac{1}{4}$
(b) $\frac{1}{2}$
(c) $\sqrt{2}$
(d) $2 \sqrt{2}$

Sol. We have

$$
f(x)=\sin x \cos x
$$

$$
\begin{aligned}
& \Rightarrow \quad f(x)=\frac{1}{2} \cdot 2 \sin x \cos x=\frac{1}{2} \sin 2 x \\
& \\
& \Rightarrow \quad f^{\prime}(x)=\frac{1}{2} \cdot 2 \cos 2 x \\
& \quad f^{\prime}(x)=\cos 2 x
\end{aligned}
$$

Now for local maxima and local minima $f^{\prime}(x)=0$

$$
\begin{array}{rlrl}
\therefore & & \cos 2 x & =0 \\
& & 2 x & =(2 n+1) \frac{\pi}{2}, \quad n \in \mathrm{I} \\
\Rightarrow & x & =(2 n+1) \frac{\pi}{4}
\end{array}
$$

$$
\begin{aligned}
x & =\frac{\pi}{4}, \frac{3 \pi}{4} \ldots \\
f^{\prime \prime}(x) & =-2 \sin 2 x \\
f^{\prime \prime}(x)_{x=\frac{\pi}{4}} & =-2 \sin 2 \cdot \frac{\pi}{4}=-2 \sin \frac{\pi}{2}=-2<0 \text { maxima } \\
f^{\prime \prime}(x)_{x=\frac{3 \pi}{4}} & =-2 \sin 2 \cdot \frac{3 \pi}{4}=-2 \sin \frac{3 \pi}{2}=2>0 \text { minima }
\end{aligned}
$$

So $f(x)$ is maximum at $x=\frac{\pi}{4}$
$\therefore \quad$ Maximum value of $f(x)=\sin \frac{\pi}{4} \cdot \cos \frac{\pi}{4}=\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}=\frac{1}{2}$
Hence, the correct option is (b).
Q56. At $x=\frac{5 \pi}{6}, f(x)=2 \sin 3 x+3 \cos 3 x$ is:
(a) maximum
(b) minimum
(c) zero
(d) neither maximum nor minimum.

Sol. We have $f(x)=2 \sin 3 x+3 \cos 3 x$

$$
f^{\prime}(x)=2 \cos 3 x \cdot 3-3 \sin 3 x \cdot 3=6 \cos 3 x-9 \sin 3 x
$$

$$
f^{\prime \prime}(x)=-6 \sin 3 x \cdot 3-9 \cos 3 x \cdot 3
$$

$$
=-18 \sin 3 x-27 \cos 3 x
$$

$$
f^{\prime \prime}\left(\frac{5 \pi}{6}\right)=-18 \sin 3\left(\frac{5 \pi}{6}\right)-27 \cos 3\left(\frac{5 \pi}{6}\right)
$$

$$
=-18 \sin \left(\frac{5 \pi}{2}\right)-27 \cos \left(\frac{5 \pi}{2}\right)
$$

$$
=-18 \sin \left(2 \pi+\frac{\pi}{2}\right)-27 \cos \left(2 \pi+\frac{\pi}{2}\right)
$$

$$
=-18 \sin \frac{\pi}{2}-27 \cos \frac{\pi}{2}=-18 \cdot 1-27 \cdot 0
$$

$$
=-18<0 \text { maxima }
$$

Maximum value of $f(x)$ at $x=\frac{5 \pi}{6}$

$$
\begin{aligned}
f\left(\frac{5 \pi}{6}\right) & =2 \sin 3\left(\frac{5 \pi}{6}\right)+3 \cos 3\left(\frac{5 \pi}{6}\right)=2 \sin \frac{5 \pi}{2}+3 \cos \frac{5 \pi}{2} \\
& =2 \sin \left(2 \pi+\frac{\pi}{2}\right)+3 \cos \left(2 \pi+\frac{\pi}{2}\right)=2 \sin \frac{\pi}{2}+3 \cos \frac{\pi}{2}=2
\end{aligned}
$$

Hence, the correct option is (a).
Q57. Maximum slope of the curve $\mathrm{y}=-x^{3}+3 x^{2}+9 x-27$ is:
(a) 0
(b) 12
(c) 16
(d) 32

Sol. Given that $\quad y=-x^{3}+3 x^{2}+9 x-27$

$$
\frac{d y}{d x}=-3 x^{2}+6 x+9
$$

\therefore Slope of the given curve,

$$
\begin{aligned}
m & =-3 x^{2}+6 x+9 \\
\frac{d m}{d x} & =-6 x+6
\end{aligned}
$$

For local maxima and local minima, $\frac{d m}{d x}=0$

$$
\therefore \quad-6 x+6=0 \quad \Rightarrow \quad x=1
$$

Now

$$
\frac{d^{2} m}{d x^{2}}=-6<0 \quad \text { maxima }
$$

$\therefore \quad$ Maximum value of the slope at $x=1$ is

$$
m_{x=1}=-3(1)^{2}+6(1)+9=-3+6+9=12
$$

Hence, the correct option is (b).
Q58. $f(x)=x^{x}$ has a stationary point at
(a) $x=e$
(b) $x=\frac{1}{e}$
(c) $x=1$
(d) $x=\sqrt{e}$

Sol. We have

$$
f(x)=x^{x}
$$

Taking \log of both sides, we have

$$
\log f(x)=x \log x
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{array}{rlrl}
\frac{1}{f(x)} \cdot f^{\prime}(x) & =x \cdot \frac{1}{x}+\log x \cdot 1 \\
\Rightarrow \quad & f^{\prime}(x) & =f(x)[1+\log x]=x^{x}[1+\log x]
\end{array}
$$

To find stationary point, $f^{\prime}(x)=0$

$$
\begin{array}{lrrr}
\therefore & & x^{x}[1+\log x] & =0 \\
x^{x} \neq 0 & \therefore & 1+\log x & =0
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad \log x=-1 \Rightarrow x=e^{-1} \Rightarrow x=\frac{1}{e} \\
& \text { Hence, the correct option is }(b) .
\end{aligned}
$$

Hence, the correct option is (b).
Q59. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is:
(a) e
(b) e^{e}
(c) $e^{1 / e}$
(d) $\left(\frac{1}{e}\right)^{1 / e}$

Sol. Let

$$
f(x)=\left(\frac{1}{x}\right)^{x}
$$

Taking \log on both sides, we get

$$
\begin{aligned}
& \log [f(x)] \\
&=\quad x \log \frac{1}{x} \\
& \Rightarrow \quad \log [f(x)]=x \log x^{-1} \Rightarrow \log [f(x)]=-[x \log x]
\end{aligned}
$$

Differentiating both sides w.r.t. x, we get

$$
\begin{aligned}
\frac{1}{f(x)} \cdot f^{\prime}(x) & =-\left[x \cdot \frac{1}{x}+\log x \cdot 1\right]=-f(x)[1+\log x] \\
\Rightarrow \quad f^{\prime}(x) & =-\left(\frac{1}{x}\right)^{x}[1+\log x]
\end{aligned}
$$

For local maxima and local minima $f^{\prime}(x)=0$

$$
\begin{aligned}
& \quad-\left(\frac{1}{x}\right)^{x}[1+\log x]=0 \Rightarrow\left(\frac{1}{x}\right)^{x}[1+\log x]=0 \\
& \left(\frac{1}{x}\right)^{x} \neq 0
\end{aligned}
$$

$$
\therefore \quad 1+\log x=0 \Rightarrow \log x=-1 \Rightarrow x=e^{-1}
$$

So, $x=\frac{1}{e}$ is the stationary point.
Now $\quad f^{\prime}(x)=-\left(\frac{1}{x}\right)^{x}[1+\log x]$

$$
f^{\prime \prime}(x)=-\left[\left(\frac{1}{x}\right)^{x}\left(\frac{1}{x}\right)+(1+\log x) \cdot \frac{d}{d x}(x)^{x}\right]
$$

$$
f^{\prime \prime}(x)=-\left[(e)^{1 / e}(e)+\left(1+\log \frac{1}{e}\right) \frac{d}{\mathrm{dx}}\left(\frac{1}{e}\right)^{1 / e}\right]
$$

$$
x=\frac{1}{e}=-e^{\frac{1}{e}}{ }^{1}<0 \text { maxima }
$$

$\therefore \quad$ Maximum value of the function at $x=\frac{1}{e}$ is

$$
f\left(\frac{1}{e}\right)=\left(\frac{1}{1 / e}\right)^{1 / e}=e^{1 / e}
$$

Hence, the correct option is (c).

Fill in the blanks in each of the following exercises $\mathbf{6 0}$ to $\mathbf{6 4}$.

Q60. The curves $y=4 x^{2}+2 x-8$ and $y=x^{3}-x+13$ touch each other at the point \qquad .
Sol. We have

$$
\begin{align*}
& y=4 x^{2}+2 x-8 \tag{i}\\
& y=x^{3}-x+13 \tag{ii}
\end{align*}
$$

Differentiating eq. (i) w.r.t. x, we have

$$
\frac{d y}{d x}=8 x+2 \quad \Rightarrow \quad m_{1}=8 x+2
$$

[m is the slope of curve (i)]

Differentiating eq. (ii) w.r.t. x, we get

$$
\frac{d y}{d x}=3 x^{2}-1 \Rightarrow \begin{aligned}
& m_{2}=3 x^{2}-1 \\
& {\left[m_{2} \text { is the slope of curve }(i i)\right]}
\end{aligned}
$$

If the two curves touch each other, then $m_{1}=m_{2}$

$$
\left.\begin{array}{lrl}
\therefore & 8 x+2 & =3 x^{2}-1 \\
\Rightarrow & 3 x^{2}-8 x-3 & =0 \quad \Rightarrow 3 x^{2}-9 x+x-3=0 \\
\Rightarrow & 3 x(x-3)+1(x-3) & =0 \Rightarrow(x-3)(3 x+1)=0 \\
& x & x
\end{array}\right) \frac{-1}{3}
$$

Putting $x=3$ in eq. (i), we get

$$
y=4(3)^{2}+2(3)-8=36+6-8=34
$$

So, the required point is $(3,34)$
Now for $x=-\frac{1}{3}$

$$
\begin{aligned}
y & =4\left(\frac{-1}{3}\right)^{2}+2\left(\frac{-1}{3}\right)-8=4 \times \frac{1}{9}-\frac{2}{3}-8 \\
& =\frac{4}{9}-\frac{2}{3}-8=\frac{4-6-72}{9}=\frac{-74}{9}
\end{aligned}
$$

\therefore Other required point is $\left(-\frac{1}{3}, \frac{-74}{9}\right)$.
Hence, the required points are $(3,34)$ and $\left(-\frac{1}{3}, \frac{-74}{9}\right)$.
Q61. The equation of normal to the curve $y=\tan x$ at $(0,0)$ is
\qquad .
Sol. We have $y=\tan x$. So, $\frac{d y}{d x}=\sec ^{2} x$
\therefore Slope of the normal $=\frac{-1}{\sec ^{2} x}=-\cos ^{2} x$
at the point $(0,0)$ the slope $=-\cos ^{2}(0)=-1$
So the equation of normal at $(0,0)$ is $y-0=-1(x-0)$
$\Rightarrow \quad y=-x \quad \Rightarrow y+x=0$
Hence, the required equation is $y+x=0$.
Q62. The values of a for which the function $f(x)=\sin x-a x+b$ increases on \mathbf{R} are \qquad .
Sol. We have $f(x)=\sin x-a x+b \quad \Rightarrow f^{\prime}(x)=\cos x-a$
For increasing the function $f^{\prime}(x)>0$
$\therefore \quad \cos x-a>0$
Since $\quad \cos x \in[-1,1]$

$$
\therefore \quad a<-1 \Rightarrow a \in(-\infty,-1)
$$

Hence, the value of a is $(-\infty,-1)$.
Q63. The function $f(x)=\frac{2 x^{2}-1}{x^{4}}, x>0$, decreases in the interval
Sol. We have $f(x)=\frac{2 x^{2}-1}{x^{4}}$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{x^{4}(4 x)-\left(2 x^{2}-1\right) \cdot 4 x^{3}}{x^{8}} \\
\Rightarrow f^{\prime}(x) & =\frac{4 x^{5}-\left(2 x^{2}-1\right) \cdot 4 x^{3}}{x^{8}}=\frac{4 x^{3}\left[x^{2}-2 x^{2}+1\right]}{x^{8}}=\frac{4\left(-x^{2}+1\right)}{x^{5}}
\end{aligned}
$$

For decreasing the function $f^{\prime}(x)<0$

$$
\begin{array}{llll}
\therefore & \frac{4\left(-x^{2}+1\right)}{x^{5}}<0 & \Rightarrow-x^{2}+1<0 \quad \Rightarrow \quad x^{2}>1 \\
& x & x> \pm 1 & \Rightarrow x \in(1, \infty)
\end{array}
$$

Hence, the required interval is $(1, \infty)$.
Q64. The least value of the function $f(x)=a x+\frac{b}{x}$ (where $a>0$, $b>0, x>0$) is \qquad .

Sol. Here,

$$
f(x)=a x+\frac{b}{x} \Rightarrow f^{\prime}(x)=a-\frac{b}{x^{2}}
$$

For maximum and minimum value $f^{\prime}(x)=0$

$$
\therefore \quad a-\frac{b}{x^{2}}=0 \Rightarrow x^{2}=\frac{b}{a} \Rightarrow x= \pm \sqrt{\frac{b}{a}}
$$

Now

$$
f^{\prime \prime}(x)=\frac{2 b}{x^{3}}
$$

$$
f^{\prime \prime}(x)_{x=\sqrt{\frac{b}{a}}}=\frac{2 b}{\left(\frac{b}{a}\right)^{3 / 2}}=2 \frac{a^{3 / 2}}{b^{1 / 2}}>0 \quad(\because a, b>0)
$$

Hence, minima
So the least value of the function at $x=\sqrt{\frac{b}{a}}$ is

$$
f\left(\sqrt{\frac{b}{a}}\right)=a \cdot \sqrt{\frac{b}{a}}+\frac{b}{\sqrt{\frac{b}{a}}}=\sqrt{a b}+\sqrt{a b}=2 \sqrt{a b}
$$

Hence, least value is $2 \sqrt{a b}$.

