Mathematics

(Chapter - 1) (Rational Numbers)
 (Class - VIII)

Exercise 1.1

Question 1:

Using appropriate properties find:
(i) $-\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}$
(ii) $\frac{2}{5} \times\left(\frac{3}{-7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$

Answer 1:

(i) $-\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6}=-\frac{2}{3} \times \frac{3}{5}-\frac{3}{5} \times \frac{1}{6}+\frac{5}{2}$
[Using associative property]
$=\frac{3}{5}\left(\frac{-2}{3}-\frac{1}{6}\right)+\frac{5}{2}$
[Using distributive property]
$=\frac{3}{5}\left(\frac{-4-4}{6}\right)+\frac{5}{2}=\frac{3}{5} \times \frac{-5}{6}+\frac{5}{2}$
$=-\frac{1}{2}+\frac{5}{2}=\frac{-1+5}{2}=\frac{4}{2}=2$
(ii) $\frac{2}{5} \times\left(\frac{3}{-7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5}$
$=\frac{2}{5} \times\left(\frac{-3}{7}\right)+\frac{1}{14} \times \frac{2}{5}-\frac{1}{6} \times \frac{3}{2}$
[Using associative property]
$=\frac{2}{5} \times\left(\frac{-3}{7}+\frac{1}{14}\right)-\frac{1}{4}$
[Using distributive property]
$=\frac{2}{5} \times\left(\frac{-6+1}{14}\right)-\frac{1}{4}=\frac{2}{5} \times \frac{-5}{14}-\frac{1}{4}$
$=\frac{-1}{7}-\frac{1}{4}=\frac{-4-7}{28}=\frac{-11}{28}$

Question 2:

Write the additive inverse of each of the following:
(i) $\frac{2}{8}$
(ii) $\frac{-5}{9}$
(iii) $\frac{-6}{-5}$
(iv) $\frac{2}{-9}$
(v) $\frac{19}{-6}$

Answer 2:

We know that additive inverse of a rational number $\frac{a}{b}$ is $\left(\frac{-a}{b}\right)$, such that $\frac{a}{b}+\left(\frac{-a}{b}\right)=0$.
(i) Additive inverse of $\frac{2}{8}$ is $\frac{-2}{8}$.
(ii) Additive inverse of $\frac{-5}{9}$ is $\frac{5}{9}$.
(iii) Additive inverse of $\frac{-6}{-5}$ is $\frac{-6}{5}$.
(iv) Additive inverse of $\frac{2}{-9}$ is $\frac{2}{9}$.
(v) Additive inverse of $\frac{19}{-6}$ is $\frac{19}{6}$.

Question 3:

Verify that $-(-x)=x$ for:
(i) $x=\frac{11}{15}$
(ii) $x=-\frac{13}{17}$

Answer 3:
(i) Putting $x=\frac{11}{15}$ in $-(-x)=x$,

$$
\begin{aligned}
& -\left(-\frac{11}{15}\right)=\frac{11}{15} \quad \Rightarrow \quad \frac{11}{15}=\frac{11}{15} \\
& \Rightarrow \quad \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

Hence, verified.
(ii) Putting $x=\frac{-13}{17}$ in $-(-x)=x$,

$$
\begin{aligned}
& -\left\{-\left(\frac{-13}{17}\right)\right\}=\frac{-13}{17} \Rightarrow \frac{-13}{17}=\frac{-13}{17} \\
& \Rightarrow \quad \text { L.H.S. }=\text { R.H.S. }
\end{aligned}
$$

Hence, verified.

Question 4:

Find the multiplicative inverse of the following:
(i) $\quad-13$
(ii) $\frac{-13}{19}$
(iii) $\frac{1}{5}$
(iv) $\frac{-5}{8} \times \frac{-3}{7}$
(v) $-1 \times \frac{-2}{5}$
(vi) -1

Answer 4:

We know that multiplicative inverse of a rational number a is $\left(\frac{1}{a}\right)$, such that $a \times \frac{1}{a}=1$.
(i) Multiplicative inverse of -13 is $\frac{-1}{13}$.
(ii) Multiplicative inverse of $\frac{-13}{19}$ is $\frac{-19}{13}$.
(iii) Multiplicative inverse of $\frac{1}{5}$ is 5 .
(iv) Multiplicative inverse of $\frac{-5}{8} \times \frac{-3}{7}=\frac{15}{56}$ is $\frac{56}{15}$.
(v) Multiplicative inverse of $-1 \times \frac{-2}{5}=\frac{2}{5}$ is $\frac{5}{2}$.
(vi) Multiplicative inverse of -1 is $\frac{1}{-1}$.

Question 5:

Name the property under multiplication used in each of the following:
(i) $\quad \frac{-4}{5} \times 1=1 \times \frac{-4}{5}$
(ii) $-\frac{13}{17} \times \frac{-2}{7}=\frac{-2}{7} \times \frac{-13}{17}$
(iii) $\frac{-19}{29} \times \frac{29}{-19}=1$

Answer 5:
(i) 1 is the multiplicative identity.
(ii) Commutative property.
(iii) Multiplicative Inverse property.

Question 6:

Multiply $\frac{6}{13}$ by the reciprocal of $\frac{-7}{16}$.

Answer 6:

The reciprocal of $\frac{-7}{16}$ is $\frac{-16}{7}$.
According to the question,

$$
\frac{6}{13} \times\left(\frac{-16}{7}\right)=\frac{-96}{91}
$$

Question 7:

Tell what property allows you to compute $\frac{1}{3} \times\left(6 \times \frac{4}{3}\right)$ as $\left(\frac{1}{3} \times 6\right) \times \frac{4}{3}$.
Answer 7:
By using associative property of multiplication, $a \times(b \times c)=(a \times b) \times c$.

Question 8:

Is $\frac{8}{9}$ the multiplicative inverse of $-1 \frac{1}{8}$? Why or why not?

Answer 8:

Since multiplicative inverse of a rational number a is $\left(\frac{1}{a}\right)$, if $a \times \frac{1}{a}=1$.
Therefore, $\quad \frac{8}{9} \times\left(-1 \frac{1}{8}\right)=\frac{8}{9} \times \frac{-9}{8}=-1$
But its product must be positive 1.
Therefore, $\frac{8}{9}$ is not the multiplicative inverse of $\left(-1 \frac{1}{8}\right)$.

Question 9:

Is 0.3 the multiplicative inverse of $3 \frac{1}{3}$? Why or why not?

Answer 9:

Since multiplicative inverse of a rational number a is $\left(\frac{1}{a}\right)$, if $a \times \frac{1}{a}=1$.
Therefore, $\quad 0.3 \times 3 \frac{1}{3}=\frac{3}{10} \times \frac{10}{3}=1$
Therefore, Yes 0.3 is the multiplicative inverse of $3 \frac{1}{3}$.

Question 10:

Write:
(i) The rational number that does not have a reciprocal.
(ii) The rational numbers that are equal to their reciprocals.
(iii) The rational number that is equal to its negative.

Answer 10:

(i) 0
(ii) 1 and -1
(iii) 0

Question 11:

Fill in the blanks:
(i) Zero has \qquad reciprocal.
(ii) The numbers \qquad and \qquad are their own reciprocals.
(iii) The reciprocal of -5 is \qquad .
(iv) Reciprocal of $\frac{1}{x}$, where $x \neq 0$ is \qquad .
(v) The product of two rational numbers is always a \qquad .
(vi) The reciprocal of a positive rational number is \qquad

Answer 11:

(i) No
(ii) $1,-1$
(iii) $\frac{-1}{5}$
(iv) x
(v) Rational Number
(vi) Positive

Exercise 1.2

Question 1:

Represent these numbers on the number line:
(i) $\frac{7}{4}$
(ii) $\frac{-5}{6}$

Answer 1:
(i) $\frac{7}{4}=1 \frac{3}{4}$

Here, P is $1 \frac{3}{4}=\frac{7}{4}$
(ii) $\frac{-5}{6}$

Here, M is $\frac{-5}{6}$

Question 2:

Represent $\frac{-2}{11}, \frac{-5}{11}, \frac{-9}{11}$ on the number line.
Answer 2:
Here, $\mathrm{B}=\frac{-2}{11}, \mathrm{C}=\frac{-5}{11}$ and $\mathrm{D}=\frac{-9}{11}$

Question 3:

Write five rational numbers which are smaller than 2.

Answer 3:

$\frac{1}{3}, \frac{1}{4}, \frac{1}{2}, \frac{-1}{2}, \frac{-1}{5}$ and so on.

Question 4:

Find ten rational numbers between $\frac{-2}{5}$ and $\frac{1}{2}$.

Answer 4:

Given rational numbers $\frac{-2}{5}$ and $\frac{1}{2}$
Here, L.C.M. of 5 and 2 is 10.
$\therefore \quad \frac{-2}{5} \times \frac{2}{2}=\frac{-4}{10}$ and $\frac{1}{2} \times \frac{5}{5}=\frac{5}{10}$
Again, $\frac{-4}{10} \times \frac{2}{2}=\frac{-8}{20}$ and $\frac{5}{10} \times \frac{2}{2}=\frac{10}{20}$
\therefore Ten rational number between $\frac{-2}{5}$ and $\frac{1}{2}$ are $\frac{-7}{20}, \frac{-6}{20}, \frac{-5}{20}, \frac{-4}{20}, \frac{-3}{20}, \frac{-2}{20}, \frac{-1}{20}, 0, \frac{1}{20}, \frac{2}{20}$.

Question 5:

Find five rational numbers between:
(i) $\frac{2}{3}$ and $\frac{4}{5}$
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
(iii) $\frac{1}{4}$ and $\frac{1}{2}$

Answer 5:

(i) $\frac{2}{3}$ and $\frac{4}{5}$

L.C.M. of 3 and 5 is 15 .
$\therefore \quad \frac{2}{3} \times \frac{5}{5}=\frac{10}{15}$ and $\frac{4}{5} \times \frac{3}{3}=\frac{12}{15}$
Again $\frac{10}{15} \times \frac{4}{4}=\frac{40}{60}$ and $\frac{12}{15} \times \frac{4}{4}=\frac{48}{60}$
$\therefore \quad$ Five rational numbers between $\frac{2}{3}$ and $\frac{4}{5}$ are $\frac{41}{60}, \frac{42}{60}, \frac{43}{60}, \frac{44}{60}, \frac{45}{60}$.
(ii) $\frac{-3}{2}$ and $\frac{5}{3}$
L.C.M. of 2 and 3 is 6 .
$\therefore \quad \frac{-3}{2} \times \frac{3}{3}=\frac{-9}{6}$ and $\frac{5}{3} \times \frac{2}{2}=\frac{10}{6}$
$\therefore \quad$ Five rational numbers between $\frac{-3}{2}$ and $\frac{5}{3}$ are $\frac{-8}{6}, \frac{-7}{6}, 0, \frac{1}{6}, \frac{2}{6}$.
(iii) $\frac{1}{4}$ and $\frac{1}{2}$
L.C.M. of 4 and 2 is 4.
$\therefore \quad \frac{1}{4} \times \frac{1}{1}=\frac{1}{4}$ and $\frac{1}{2} \times \frac{2}{2}=\frac{2}{4}$
Again $\frac{1}{4} \times \frac{8}{8}=\frac{8}{32}$ and $\frac{2}{4} \times \frac{8}{8}=\frac{16}{32}$
$\therefore \quad$ Five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ are $\frac{9}{32}, \frac{10}{32}, \frac{11}{32}, \frac{12}{32}, \frac{13}{32}$.

Question 6:

Write 5 rational numbers greater than -2 .

Answer 6:

Five rational numbers greater than -2 are:
$\frac{-3}{2},-1, \frac{-1}{2}, 0, \frac{1}{2}$
[Other rational numbers may also be possible]

Question 7:

Find ten rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$.

Answer 7:

The given rational numbers $\frac{3}{5}$ and $\frac{3}{4}$
L.C.M. of 5 and 4 is 20 .
$\therefore \quad \frac{3}{5} \times \frac{4}{4}=\frac{12}{20}$ and $\frac{3}{4} \times \frac{5}{5}=\frac{15}{20}$
Again $\frac{12}{20} \times \frac{8}{8}=\frac{96}{160}$ and $\frac{15}{20} \times \frac{8}{8}=\frac{120}{160}$
$\therefore \quad$ Five rational numbers between $\frac{3}{5}$ and $\frac{3}{4}$ are:
$\frac{97}{160}, \frac{98}{160}, \frac{99}{160}, \frac{100}{160}, \frac{101}{160}, \frac{102}{160}, \frac{103}{160}, \frac{104}{160}, \frac{105}{160}, \frac{106}{160}$

