EXERCISE 11.1

1. With the help of a ruler and a compass it is not possible to construct an angle of:
(a) 37.5°
(b) 40°
(c) 22.5°
(d) 67.5°

Sol. With the help of a ruler and a compass it is not possible to construct an angle of 40°.
Hence, (b) is the correct answer.
2. The construction of a triangle ABC , given that $\mathrm{BC}=6 \mathrm{~cm}$, $\angle \mathrm{B}=45^{\circ}$ is not possible when difference of AB and AC is equal to:
(a) 6.9 cm
(b) 5.2 cm
(c) 5.0 cm
(d) 4.0 cm

Sol. We are given $\mathrm{BC}=6 \mathrm{~cm}$ and a base angle $\angle \mathrm{B}$, the difference between other two sides AB and AC should not be equal to or greater than BC . Hence, the correct answer is (a) 6.9 cm .
3. The construction of a triangle ABC , given that $\mathrm{BC}=3 \mathrm{~cm}, \angle \mathrm{C}=60^{\circ}$ is possible when difference of AB and AC is equal to:
(a) 3.2 cm
(b) 3.1 cm
(c) 3 cm
(d) 2.8 cm

Sol. The correct answer is (d) 2.8 cm .

EXERCISE 11.2

Write True or False in each of the following. Give reasons for your answer.

1. An angle of 52.5° can be constructed.

Sol. Since, $52.5^{\circ}=\frac{1}{4} \times 210^{\circ}$ and $210^{\circ}=180^{\circ}+30^{\circ}$ which can be constructed. Hence, the given statement is correct.
2. An angle of 42.5° can be constructed.

Sol. Since $42.5^{\circ}=\frac{1}{2} \times 85^{\circ}$ and 85° cannot be constructed by using ruler and compass.
3. A triangle ABC can be constructed in which $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~A}=45^{\circ}$ and $\mathrm{BC}+\mathrm{AC}=5 \mathrm{~cm}$.
Sol. Since sum of two sides of a triangle is always greater than the third side, so we can not construct a triangle in which $\mathrm{AB}=\mathrm{BC}+\mathrm{AC}$.
4. A triangle can be constructed in which $\mathrm{BC}=6 \mathrm{~cm}, \angle \mathrm{C}=30^{\circ}$ and $A C-A B=4 \mathrm{~cm}$.

Sol. Because $\mathrm{AC}-\mathrm{AB}(=4 \mathrm{~cm})<\mathrm{BC}(=6 \mathrm{~cm})$. i.e., $\mathrm{AC}<\mathrm{AB}+\mathrm{BC}$ or $\mathrm{AB}+\mathrm{BC}>\mathrm{AC}$ which is true.
Hence, the given statement is true.
5. A triangle can be constructed in which $\angle \mathrm{B}=105^{\circ}, \angle \mathrm{C}=90^{\circ}$ and $A B+B C+A C=10 \mathrm{~cm}$.
Sol. The given statement is false, because $\angle \mathrm{B}+\angle \mathrm{C}=105^{\circ}+90^{\circ}=195^{\circ}>180^{\circ}$.
6. A triangle ABC can be constructed in which $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$ and $A B+B C+A C=12 \mathrm{~cm}$.
Sol. The given statement is true, because $\angle \mathrm{B}+\angle \mathrm{C}=60^{\circ}+45^{\circ}=105^{\circ}<180^{\circ}$.

EXERCISE 11.3

1. Draw an angle of 110° with the help of a protractor and bisect it. Measure each angle.
Sol. Given: An angle $\mathrm{ABC}=110^{\circ}$
Required: To draw the bisector of $\angle \mathrm{ABC}$

Steps of construction:

1. With B as centre and a convenient radius draw an arc to intersect the rays BA and $B C$ at P and Q respectively.
2. With centre P and a radius greater than half of PQ, draw an arc.
3. With centre Q and the same
 radius (as in step 2), draw another arc to cut the previous arc at R.
4. Draw ray $B R$. This ray $B R$ is the required bisector of $\angle A B C$.
5. Draw a line segment $A B$ of 4 cm in length. Draw a line perpendicular to AB through A and B respectively. Are these lines parallel?
Sol. Given: A line segment $A B$ of length 4 cm .
Required: To draw perpendicular to AB through A and B , respectively.
Steps of construction:
6. Draw $A B=4 \mathrm{~cm}$.
7. With A as centre and any convenient radius, draw an arc, cutting AB at P .
8. With P as centre and the same radius, draw an arc cutting the arc drawn in step 2 at Q .

9. With Q as centre and the same radius as in steps 2 and 3 , draw an arc, cutting the arc drawn in step 3 at R.
10. With Q as centre and the same radius, draw an arc.
11. With R as centre and the same radius, draw an arc, cutting the arc drawn in step 5 at X .
12. Draw OX and produce it to C and D.
13. Now, repeat the steps from 2 to 7 to draw the line EF perpendicular through B.
Yes, these lines are parallel because sum of the interior angles on the same side of the transversal is 180°]
14. Draw an angle of 80° with the help of protractor. Then construct angles of (i) 40°, (ii) 160° and (iii) 120°.

Sol. Steps of Construction:

1. Draw a ray OA.
2. With the help of a protractor, construct $\angle \mathrm{BOA}=80^{\circ}$
3. Taking O as centre and any suitable radius, draw an arc to intersect rays
 OA and OB at points P and Q respectively.
4. Bisect $\angle \mathrm{BOA}$ as done in Q 1 . Let ray OC be the bisector of $\angle \mathrm{BOA}$, then $\angle \mathrm{ROA}=\frac{1}{2} \angle \mathrm{BOA}=\frac{1}{2} \times 80^{\circ}=40^{\circ}$.
5. With Q as centre and radius equal to PQ , draw an arc to cut the extended arc PQ at R. Join OR and produce it to form ray OD, then $\angle \mathrm{DOA}=2 \angle \mathrm{BOA}=2 \times 80^{\circ}=160^{\circ}$.
6. Bisect $\angle \mathrm{DOB}$ as in Q 1 . Let OE be the bisector of $\angle \mathrm{DOB}$ is then

$$
\begin{aligned}
\angle \mathrm{EOA}=\angle \mathrm{EOB}+\angle \mathrm{BOA} & =\frac{1}{2} \angle \mathrm{DOB}+\angle \mathrm{BOA} \\
& =\frac{1}{2}\left(80^{\circ}\right)+80^{\circ}=40^{\circ}+80^{\circ}=120^{\circ}
\end{aligned}
$$

4. Construct a triangle whose sides are $3.6 \mathrm{~cm}, 3.0 \mathrm{~cm}$ and 4.8 cm . Bisect the smallest angle and measure each part.

Sol. Steps of Construction:

Step1: Draw a line $\mathrm{AB}=4.8 \mathrm{~cm}$.
Step 2: Now, take radius of 3 cm and center 'A' draw an arc. And take radius of 3.6 cm and center ' B ' draw an arc that intersect our previous arc at ' C '.

Step 3: Join CA and CB we get required triangle ABC.
Now, we measure all internal angles and we get $\angle \mathrm{ABC}$ is smallest angle, So, we bisect $\angle \mathrm{ABC}$.
Step 4: Take any radius
 (Less than half of AB) and center ' B ' draw an arc that intersect our line AB at P and line BC at Q .
Step 5: With same radius and centre ' P ' and ' Q ' draw arcs which intersect at 'R'.
Step 6: Join BR and extend BR that line intersect AC at 'D'.
Now, we can easily measure each angle with the help of protractor.
5. Construct a triangle ABC in which $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=60^{\circ}$ and $\mathrm{AC}+\mathrm{AB}=7.5 \mathrm{~cm}$.
Sol. Given: In $\triangle \mathrm{ABC}, \mathrm{BC}=5 \mathrm{~cm}$,
$\mathrm{AC}+\mathrm{AB}=7.5 \mathrm{~cm}$ and $\angle \mathrm{B}=60^{\circ}$
Required: To construct $\triangle \mathrm{ABC}$ Steps of Construction:

1. Draw a ray BX and cut off a line segment $\mathrm{BC}=5 \mathrm{~cm}$ from it.
2. At B, construct $\angle \mathrm{XBY}=60^{\circ}$.
3. With B as centre and radius $=7.5 \mathrm{~cm}$, draw an arc to meet BY at D.
4. Join CD.
5. Draw the perpendicular bisector of CD, intersecting BD at A .
6. Join AC. Then, ABC is the required triangle.

7. Construct a square of side 3 cm .

Sol. Steps of construction.

1. Take $\mathrm{AB}=3 \mathrm{~cm}$.
2. At A , draw $\mathrm{AY} \perp \mathrm{AB}$.
3. With A as centre and radius $=3 \mathrm{~cm}$, describe an arc cutting AY at D.
4. With B and D as centres and radii equal to 3 cm , draw arcs intersecting at C .
5. Join $B C$ and $D C . A B C D$ is the required square.

6. Construct a rectangle whose adjacent sides are of lengths 5 cm and 3.5 cm .
Sol. Steps of construction:
7. Take $\mathrm{AB}=5 \mathrm{~cm}$.
8. Draw $A Y \perp A B$.
9. With A as centre and radius $=3.5 \mathrm{~cm}$,
 describe an arc cutting AY at D .
10. With D as centre and radius 5 cm , describe an arc and with B as centre and radius 3.5 cm , describe another arc intersecting the first arc at C.
11. Join BC and $\mathrm{DC} . \mathrm{ABCD}$ is the required rectangle.
12. Construct a rhombus whose side is of length 3.4 cm and one of its angle is 45°.
Sol. Steps of construction:
13. Take $\mathrm{AB}=3.4 \mathrm{~cm}$.
14. At A and B, construct $\angle \mathrm{BAM}=45^{\circ}$ and $\angle \mathrm{TBP}=45^{\circ}$ respectively.
15. From AM cut off $\mathrm{AD}=3.4 \mathrm{~cm}$ and from BP cut off $\mathrm{BC}=3.4 \mathrm{~cm}$

16. Join AD, DC and BC.
$A B C D$ is the required rhombus.

EXERCISE 11.4

Construct each of the following and give justification:

1. A triangle if its perimeter is 10.4 cm and two angles 45° and 120°.

Sol. Steps of Construction:

1. $\operatorname{Draw} X Y=10.4 \mathrm{~cm}$.
2. Draw $\angle \mathrm{LXY}=45^{\circ}$ and $\angle \mathrm{MYX}=120^{\circ}$.
3. Draw angle bisector of $\angle \mathrm{LXY}$.
4. Draw angle bisector of $\angle \mathrm{MYX}$ such that it meets the angle bisector of $\angle \mathrm{LXY}$ at point A .
5. Draw the perpendicular bisector of AX such that it meets XY at B .
6. Draw the perpendicular bisector of AY such that it meets XY at C .
7. Join AB and AC .

Thus, ABC is the required triangle.
2. A triangle PQR given that $\mathrm{QR}=3 \mathrm{~cm}, \angle \mathrm{PQR}=45^{\circ}$ and $\mathrm{QP}-\mathrm{PR}=2 \mathrm{~cm}$

1. Draw a ray QX and cut off a line segment $\mathrm{QR}=3 \mathrm{~cm}$.
2. At Q , construct $\angle \mathrm{YQR}=45^{\circ}$.
3. From QY, cut off $\mathrm{QS}=2 \mathrm{~cm}$.
4. Join RS.
5. Draw perpendicular bisector of RS to meet QY at P.
6. Join PR . Then PQR is the required triangle.

7. A right triangle when one side is 3.5 cm and sum of other sides and the hypotenuse is 5.5 cm .

Sol. Given: In $\triangle \mathrm{ABC}$, base $\mathrm{BC}=3.5 \mathrm{~cm}$, the sum of other side and hypotenuse i.e., $\mathrm{AB}+\mathrm{AC}=5.5 \mathrm{~cm}$ and $\angle \mathrm{ABC}=90^{\circ}$.

Required: Construct the $\triangle \mathrm{ABC}$.

Steps of Construction:

1. Draw a ray BX and cut off a line segment $\mathrm{BC}=3.5 \mathrm{~cm}$ fromit.
2. Construct $\angle \mathrm{XBY}=90^{\circ}$.
3. From BY cut off a line segment $\mathrm{BD}=5.5 \mathrm{~cm}$.
4. Join CD.
5. Draw the perpendicular bisector of CD intersecting BD at A .

6. Join AC . Then, ABC is the required triangle.
7. An equilateral triangle if its altitude is 3.2 cm .

Sol. Steps of Construction:

1. Draw a line l.
2. Mark any point D on the line l.
3. At point D , draw $\overrightarrow{\mathrm{DX}} \perp l$ and cut $\mathrm{DA}=3.2 \mathrm{~cm}$ from $\overrightarrow{\mathrm{DX}}$.
4. At the point A , construct AB and AC which meets the l at points B and C respectively
 such that
$\angle \mathrm{DAB}=30^{\circ}$ and $\angle \mathrm{DAC}=30^{\circ}$
Then $\triangle \mathrm{ABC}$ is the required equilateral triangle

$$
\begin{array}{ll}
\text { because } & \angle \mathrm{ABC}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ} \\
& \angle \mathrm{ACB}=180^{\circ}-\left(90^{\circ}+30^{\circ}\right)=60^{\circ} \\
\text { and } & \angle \mathrm{BAC}=30^{\circ}+30^{\circ}=60^{\circ} .
\end{array}
$$

$$
\angle \mathrm{BAC}=30^{\circ}+30^{\circ}=60^{\circ} .
$$

5. A rhombus whose diagonals are 4 cm and 6 cm in lengths.
Sol. Steps of construction:
6. Take $\mathrm{AC}=6 \mathrm{~cm}$.
7. Draw BD the right bisector of AC .
8. Cut off $\mathrm{MB}=\mathrm{MD}=2 \mathrm{~cm}$.
9. Join $A B, B C, C D$ and $D A$. Hence, ABCD is the required rhombus.

