Class - SS2 n Subject - Chemistry-043 (SET B)

Time: 3 Hours

General Instructions: Read the following Instructions carefully.

Read the following instructions carefully.

- (a) There are 33 questions in this question paper with internal choice.
- (b) SECTION A consists of 16 multiple -choice questions carrying 1 mark each.
- (c) SECTION B consists of 5 short answer questions carrying 2 marks each.
- (d) SECTION C consists of 7 short answer questions carrying 3 marks each.
- (e) SECTION D consists of 2 case based questions carrying 4 marks each.
- (f) SECTION E consists of 3 long answer questions carrying 5 marks each.
- (g) All questions are compulsory.
- (h) Use of log tables and calculators is not allowed.

R= 8.314 JK-1Mol-1, Atomic number: Ti = 22, Cr = 24, Fe = 26, Co = 27, Ni = 28, Zn = 30

SECTION A

The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.

A solution contains Fe2+, Fe3+ and I ions. This solution was treated with iodine at 35°C. E° for Fe^{3+}/Fe^{2+} is + 0.77 V and E° for $I_2/2I^-$ = 0.536 V. The favorable redox reaction is

(a) 12 will be reduced to I

(b) there will be no redox reaction

(c) I will be oxidized to 12

(d) Fe2+ will be oxidized to Fe3+

The rate of the reaction: $2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways

$$\frac{-d[N_2O_5]}{dt} = k[N_2O_5]; \quad \frac{d[NO_2]}{dt} = k[N_2O_5]; \quad \frac{d[O_2]}{dt} = k[N_2O_5]$$

The relationship between k and k' and between k and k" are :

- (a) K' = 2k, k'' = k
- (b) k' = 2k, k'' = k/2
- (c) K' = 2k, k" = 2k
- (d) k' = k, k'' = k

Which one of the following is not an allylic halide?

- (a) 4-Bromopent-2-ene
- (b) 3-Bromo-2-methylbut-1-ene
- (c) 1-Bromobut-2-ene
- (d) 4-Bromobut-1-ene

Which of the following fact(s) explain as to why p-nitrophenol is more acidic than phenol? 1. - I Effect of nitro group.

II. Greater resonance effect of p-nitrophenyl group

- III. Steric effect of bulky nitro group
- (a) I and II
- (b) I and III
- (c) II and III
- (d) II alone

	For the ions Zn ²⁺ , (a) All these are co	Ni ²⁺ and Cr ³⁺ which a plorless.	mong the following	statements is c	orrect?					
•	(b) All these are colored. (c) Only Ni ²⁺ is colored and Zn ²⁺ and Cr ³⁺ are colorless. (d) Only Zn ²⁺ is colorless and Ni ²⁺ and Cr ³⁺ are colored.									
X)	The rate constant of a reaction is 3.00×10^3 L mol ⁻¹ sec ⁻¹ . The order of this reaction will be:									
9	(a) 0	(b) 1	(c) 2		(d) 3					
7	Addition of hydrogen cyanide to aldehydes and ketones occurs in presence of a base. The role of base is to									
	(i) Catalyze the rea	ection	/iii	Generate CN ⁻ i	on					
	(iii) Slow down the reaction			(iv) To stabilize the cyanohydrins						
	(a) (i) and (iii)	(b) (i) and (ii)	(c) (i) and (i	v)	(d) (ii) and (iv))				
9	(i) As a result of La (ii) IE ₂ is high for C (iii) Heavier members (iv) In any transition elements near miders (a) (i) and (ii) Read the following (i) Propan-2-ol has (ii) Boiling points (iii) The lower me	(b) (i), (ii) and (i g statements and cho s lower boiling point decrease with branch mbers of aldehydes a	is very high for Zn. is very high for Zn. ints like p-block eler number of oxidation (c) (i), cose the correct opt than propan-1-ol. ing.	ments favours lo states is showr (ii) and (iii) ion	ower oxidation n by middle eld (d) (ii) an	n states. ements or nd (iv)				
		n hydrogen bond with of aldehydes and ket		dly on increasing	g the length of	falkyl				
	(a) TTFF	(b) TFFT	· (c) FTTT	(d) TTTF						
Ŋ	Which of the statements about "Denaturation" given below are correct? (1) Denaturation of proteins causes loss of secondary and tertiary structures of the protein. (2) Denaturation leads to the conversion of double strand of DNA into single strand. (3) Denaturation affects primary structure which gets distorted.									
	(a) (2) and (3)	(b) (1) and (3)	(c) (1) and (2)	(d) (1), (2)	and (3)	4.2				
	(a) Ethyl amine a (b) Ethyl amine a (c) Ethyl amine a compound	owing is not correct? Ind aniline both have in Ind aniline dissolve in Ind aniline both react Ind aniline both react	- NH ₂ group HCl with CHCl ₃ and KOH			1				
		T IS				2 of 6				

Vi	nich of the followin	g reagents can be used to	oxidize primary alcohols to alde	hydesi	
i)	CrO ₃ in anhydrous	medium.			
	KMnO ₄ in acidic m				
iii) Pyridinium chloro	chromate.			
iv) Heat in the preser	nce of Cu at 573K.			
a)	(i) and (iii)	(b) (ii), (iii) and (iv)	(c) (i), (iii) and (iv) (c	d) (i), (iii) and (i j
Q.	Nos. 13-16 consist Select the most ap	of two statements, one is a propriate answer from the	Assertion and the other is Reason		
a.	Both A and R are t	rue and R is the correct exp	planation of A		
b.	Both A and R are t	rue but R is not the correct	explanation of A		
	A is true but R is fa		explanation of A.		
	. A is false but R is				
u.	. A is idise but R is	irue.			
Α	scortion: Alcohole r	oast both as mudamukilaa -			1
R	eason: The hand he	eact both as nucleophiles a	nd electrophiles.		1
.,	icason. The bond be	tween C-O is broken when	alcohols react as nucleophiles.		
4	Assertion: Formalde	hyde is a planar molecule.			
		active towards nucleophilic a	addition		1
	neuson, it is very rec	terive towards nucleopmine	duition,		
1	Assertion: During ru	sting iron acts as anode and	reduction of H+ ions takes place.		1
	Reason: in dry cond	litions rusting is very slow, si	nce H ⁺ ions are not present		•
	200 miles (1990 mi		had a lot present.		
	Assertion: Aniline o	n nitration gives a substantia	l amount of m- Nitroaniline.		1
	Reason: -NH2 group	is an activating group and a	ctivates meta position also.		
		N 3	War in the second		
		SECT	ION B	* * * * * * * * * * * * * * * * * * * *	
	This section contain are very short answ	s 5 questions with internal cl er type and carry 2 marks ea	noice in one question. The following	g questions	
1	A chemical reaction	20 -> 48 + C in			
	be increased by 5 X of disappearance of	10° moi/L in 10 seconds. Cal	curs in a closed vessel. The conc. of culate the rate of appearance of C	B is found to (and the rate	(4)
8	(a) Arrange the follo	wing in and	A		
•	benzaldehyde, r	- Tolualdobuda	eactivity for nucleophilic addition:		1
		andenydedimethyla		ır answer.	1
9	(a) How will you co	onvert Ethanol to propanenitri	There is a little and the		•
	(b) Which has high	er melting point; p-Dichlorate	ile? enzene or o- Dichlorobenzene? Why	,7	1
6	IA When Date : .	- Cicinorope	enzene of o blamorobelizener with		
U	obtained. Wha	drolyzed, there is no relations t does this fact suggest about	ship among the quantities of differe	nt bases	1

- (b) Amino acids move towards cathode /anode when electricity is passed through their solution. Why?
- 22 The following figure shows vapour pressure curves of two pure liquids and the solution of the two. Which curve represents the solution? Justify your answer

SECTION C

This section contains 7 questions with internal choice in two questions. The following questions are short answer type and carry 3 marks each.

22 (a) Write the IUPAC name of the compound: CH₃CH=CH-CH₂-CH₂Br.

- 1 lc. 1
- (b) Write all the products obtained when 2, 2, 3-Trimethyl-3-bromopentane is treated with alc. KOH. Which among these is the major product?

OR

(c) How will you convert Benzyl alcohol to 2-phenylethanoic acid.

1

The following compounds are given to you:

- 2-Bromopentane, 2-Bromo-2-methylbutane, 1- Bromopentane
- (a) Write the compound which is most reactive towards S_N2 reaction.
- (b) Write the compound which is optically active.
- (c) Arrange the three compounds in order of increasing boiling point.

1

1

- 23 (a) On the basis of crystal field theory explain why both Ni(CO)₄ and [Ni(CN)₄]²⁻ have zero magnetic moment value, although their shapes are different.
 - (b) Write the IUPAC name of the linkage isomer of [Co(NH₃)₂(NO₂)₂Py₂]NO₃.
 - (c). Calculate the magnetic moment of [CoF₆]³.

- (1.6×1019) durge on 12
- (a) How much charge is required for the reducing 5.4 g of Al³⁺ ions to Al? (Atomic mass Al = 27 u)
 - (b) If a current of 0.5 ampere flows through a metallic wire for 2 hours, then how many electrons would flow through the wire? (Charge on one electron = 1.9×10^{-19} C)

- 25 (a). How are the following conversions carried out?
 - (i) Ethyl magnesium chloride -> Propan-1-ol.
 - (ii) Cyclohexylmethanol prepared using a sultable Grignard reagent.
 - (b) Write the reaction when Phenol is heated with chloroform and NaOH and the resulting mixture is acidified.

/	(a) Write a suitable reaction for the preparation of 1-methoxy-4-nitrobenzene. (b) How do you convert Methyl magnesium bromide → 2-Methylpropan-2-ol.					
	(c) Explain why alcohols are weaker acids than phenols.?					
26'	(a) Enumerate two reactions of D-glucose which cannot be explained by its open chain structure.	(2				
	(ど) What are essential amino acids? Give one example.	1				
27	(a) Arrange the following compounds in increasing order of their reactivity for addition of HCN: Benzaldehyde, p-Tolualdehyde, p-Nitrobenzaldehyde, Acetophenone and Benzophenone. (b) Give reasons for the following					
3/1	(i) There are two –NH ₂ groups in semicarbazide. However, only one is involved in the formation of semicarbazones.	1				
32	(ii) 2,2,-Dimethylpropanal does not react with dilute NaOH but reacts only with conc. NaOH.	1				
	OR .					
		3				
	An organic compound (A) (molecular formula C ₈ H ₁₆ O ₂) was hydrolyzed with dilute sulphuric acid	35.5				
	to give a carboxylic acid (B) and an alcohol (C). Oxidation of (C) with chromic acid produced (B).					
	(C) on dehydration gives but-1-ene. Identify A, B and C and write equations for the reactions					
	involved.	1				
28	The rate constant for a first order reaction is given as: $\log k = 14.34 - 1.25 \times 10^4 \text{ K/T}$. Calculate	3				
	the energy of activation for this reaction.	9				
	SECTION D					
	The following questions are case-based questions. Each question has an internal choice and carries 4 (1+1+2) marks each. Read the passage carefully and answer the questions that follow.					
30	In coordination compounds metals show two types of linkages (valences)-primary and					
	secondary. The primary valences are normally ionisable and are satisfied by negative ions. The					
	secondary valences are non ionisable. These are satisfied by neutral molecules or negative ions.					
	The secondary valence is equal to the coordination number and is fixed for a metal. The					
	ions/groups bound by the secondary linkages to the metal have characteristic spatial					
	arrangements corresponding to different condition numbers. In modern formulations, such					
	spatial arrangements are called coordination polyhedra.					
	(d) Write is the primary and secondam	1				
9	(b) What is an ambidentate ligand? Give an example	1				
	(c) II Look 13. 3 to es not react with Again	1				
	(d) Write the IUPAC name of the complex entity mentioned in part c.	1				
	OD.					
	What type of isomerism would be shown by the complex mentioned in part c.	1				

SECTION E

The following questions are long answer type and carry 5 marks each. Two questions have an internal choice.

- (a) Which Colligative property is preferred to determine molecular mass of substances? Justify 31 your answer.
 - (b) Two elements A and B form compounds having formula AB2 and AB4. When dissolved in 20 g of benzene (C6H6), 1 g of AB2 lowers the freezing point by 2.3 K whereas 1.0 g of AB4 lowers it by 1.3 K. The molar depression constant for benzene is 5.1 K kg mol-1. Calculate atomic masses of A and B.
 - (c) Why do scuba divers take air diluted with Helium with them?

- (a) A mixture of two liquids is colder as compared to the individual components. Draw a vapour pressure diagram for this mixture.
- (b) How much BaCl₂ (molar mass = 208) would be required to lower freezing point of 10 kg of water by 10 °C. Given that Kf of water = 1.86 K kg mol-1.
- Attempt any five of the following:
 - (a) Name two oxometal anions of the first series of the transition metals in which the metal exhibits the oxidation state equal to its group number.
 - (b) Why is a regular trend in the reduction potential not observed for 3d series elements?
 - (c) Despite a stable configuration Cu⁺ ion is not as stable as Cu²⁺ ion in aqueous solution. Why?
 - (d) Of the at species, Cr2+ is strongly reducing while manganese (III) is strongly oxidizing. Justify.
 - (e) Cobalt(II) is stable in aqueous solution but in the presence of complexing reagents why it is easily oxidized.
 - (f) Write the ionic equation for reaction of KMnO4 and lodide ions in basic medium.
- 33 (a) Give reasons the following observations:
 - (i) pKb of aniline is lower than the m-nitroaniline.
 - (ii) Amines less acidic than alcohols of comparable molecular masses?
 - (iii) Diazonium salts of aromatic amines are more stable than those of aliphatic amines.
 - (b) Arrange the following compounds in decreasing order of the pKb: C6H5NH2, C6H5NHCH3 and C6H5CH2NH2.
 - (c) How do you convert Ethanoic acid into Propanoic acid?

OR

- (a) Why is Gabriel phthalimide synthesis preferably used for synthesizing primary amines?
- (b) How would you distinguish between Methanamine and Ethanamine?
- (c) Arrange the following in increasing order of boiling point: C2H5OH, (CH3)2NH, C2H5NH2
- (d) How do you convert:
 - (i) Ethanamine into Methanamine.
 - (ii) Benzene to m-bromophenol

2

3

1 X5

1

1

1

29. In an electrolytic cell external source of voltage is used to bring about a chemical reaction. The electrochemical processes are of great importance in the laboratory and the chemical industry. Electrolysis can be carried out in molten or in solution state. During electrolysis oxidation takes place at anode and reduction at cathode. If inert electrodes are used then water competes for both the reactions, thus the reduction potentials play a significant role in electrolysis. The amounts of various substance deposited or obtained during electrolysis are governed by Faraday's laws of electrolysis.

(a) What products are obtained when dilute sulphuric acid is electrolysed using platinum electrodes?

(b) Chlorine and not oxygen is obtained when aqueous solution of NaCl is electrolyzed. Why? (

(c) How much electricity in terms of Faraday is required to produce 5.4 g of Al from molten AICI3?

OR

How much electricity is required to oxidize 3.6 g of water to hydrogen?

