GYAN BHRATI SCHOOL PRE BOARD EXAMINATION - II (2023-24) CLASS - 552 Subject - Chemistry (043)

Maximum Marks: 70

Time: 3 Hours

General Instructions: Read the following instructions carefully.

- (a) There are 33 questions in this question paper with internal choice. (b) SECTION A consists of 16 multiple -choice questions carrying 1 mark each.
- (c) SECTION B consists of 5 short answer questions carrying 2 marks each.
- (d) SECTION C consists of 7 short answer questions carrying 3 marks each.
- (e) SECTION D consists of 2 case based questions carrying 4 marks each.
- (f) SECTION E consists of 3 long answer questions carrying.5 marks each.
- (g) All questions are compulsory.
- (h) Use of log tables and calculators is not allowed.

R= 8.314 JK⁻¹Mol⁻¹, Atomic number: Ti = 22, Cr = 24, Fe = 25, Co = 27, Ni = 28, Zn = 30

The following questions are multiple-choice questions with one correct answer. Each question carries 1 mark. There is no internal choice in this section.

- Which of the following solutions will have the highest conductivity at 298 K? 1
 - (a) 0.01 M HCl solution

(b) 0.1 M HCl solution

(c) 0.01 M CH₃COOH solution

(d) 0.1 M CH₃COOH solution

2 A + B dil NaOH

Identify A and B:

- (a) A = 1-phenylethanal, B = acetophenone
- (c) A= Benzaldehyde, B = Acetophenone
- (b) A = Benzophenone B = formaldehyde
- (d) A = Benzophenone, B = Acetophenone
- The vitamins which can be stored in our body are: 3
 - (a) Vitamin A, B, D and E
 - (c) Vitamin A, B, C and D

- (b) Vitamin A, C, D and K
- (d) Vitamin A, D, E and K
- What is IUPAC name of the ketone A, which undergoes iodoform reaction to give 4 CH₃CH= C(CH₃)COONa and yellow precipitate of CHI₃?
 - (a) 3-Methylpent-3-en-2-one

(b) 3-Methylbut-2-en-one

(c) 2, 3-Dimethylethanone

(d) 3-Methylpent-4-one

(a) In haloarenes, the electron pairs on halogen atom are in conjugation with π -electrons of the ring.							
	 (b) The carbon-magnesium bond is covalent and non-polar in nature. (c) During SN1 reaction, the carbocation formed in the slow step being sp2 hybridised is planar. (d) Out of CH₂= CH-Cl and C₆H₅CH₂Cl, C₆H₅CH₂Cl is more reactive towards S_N1 reaction 						
6	Match the properties with the elements of 3d series						
	(i) lowest enthalpy of atomisation		(p) Sc				
	(ii) shows maximum number of oxidation states		(g) Min				
	(iii) transition metal that does not form coloured compounds		(r) Zn				
	The Goes Hot Ion		(s) Ti				
	(a) (i) (r), (ii) (q), (iii) (p)	(b) (i) (r), (ii) (s),	(iii) (p)				
	(c) (i) (p), (ii) (q), (iii) (r)	(d) (i) (s), (ii) (r)					
7	Which of the following at the same			3			
	Which of the following statement is true? (a) Molecularity of reaction can be zero or a fraction.						
	(b) Molecularity has no meaning for complex reactions.						
	(c) Molecularity of a reaction is an experimental qu	antity					
20	(d) Reactions with the molecularity three are very r	are but are fast.					
			2.27				
8	In which of the following solvents, the C4H8NH3+X ⁻ is soluble;						
	(a) ether (c) water	(b) acetone (d) bromine wa	***				
	(c) water .	(u) brothine wa	ter				
9	Which of the following observation is shown by 2 - Lhenyl ethanol with Lucas Reagent?			1			
	(a) Turbidity will be observed within five minutes						
	(b) No turbidity will be observed						
	(c) Turbidity will be observed immediately						
	(d) Turbidity will be observed at room temperature	but will disappea	r after five minutes.				
10	If the initial concentration of substance A is 1.5 M a., a citer 120 seconds the concentration of						
	substance A is 0.75 M, the rate constant for the read	tion if it follows:	zero - order kinetics is:	-			
) 0.00625 s ⁻¹	cero - oraci miretics is:				
	(=, 0.000== 11101= 5	0.00578 s ⁻¹					
	Anisole undergoes bromination with bromine in ethic bromide catalyst	47	n the absence of iron (III)	1			
	(a) Due to the activation of benzene ring by the methoxy group.						
	(b) Due to the de-activation of benzene ring by the methoxy group.						
	THE THE TO THE THE PROPERTY OF						

(d) Due to the formation of stable carbocation.

12 The trend of which property is represented by the following graph?

- (a) ionization enthalpy
- (b) atomic radii
- (c) enthalpy of atomization
- (d) melting point

Q. Nos. 13-16 consist of two statements, one is Assertion and the other is Reason. Select the most appropriate answer from the options given below:

- a. Both A and R are true and R is the correct explanation of A
- b. Both A and R are true but R is not the correct explanation of .\.
- c. A is true but R is false.
- d. A is false but R is true.
- Assertion (A): Alcohols react both as nucleophiles and electrophiles.

 Reason (R): The bond between C-O is broken when alcohols react as nucleophiles.
- 14 Assertion (A): Strong oxidising agents oxidise toluene and its derivatives to benzoic acids. Reason (R): It is possible to stop the oxidation of toluene at the aldehyde stage with suitable reagents.
- Assertion (A): Enzymes are very specific for a particular reaction and for a particular substrate.

 Reason (R): Enzymes are biocatalysts.
- Assertion (A): During electrolysis of aqueous copper sulphate solution using copper electrodes copper is deposited at the cathode.

Reason (R): The electrode potential of Cu²+/Cu is greater than that of H ⁺/H₂

SECTION B

This section contains 5 questions with internal choice in one question. The following questions are very short answer type and carry 2 marks each.

- a. Radioactive decay follows first order kinetics. The initial amount of two radioactive elements X and Y is 1 gm each. What will be the ratio of X and Y after two days if their half-lives are 12 hours and 16 hours respectively?
 - b. The hypothetical reaction $P + Q \rightarrow R$ is half order w.r.t 'P' and zero order w.r.t 'Q'. What is the unit of rate constant for this reaction?

Page 3 of B

1

1

1

1

1

	A 5% solution of Na ₂ SO ₄ .10H ₂ O (MW = 322) is isotonic with 2% solution of non- electrolytic, non volatile substance X. Find out the molecular weight of X.	2
187	A 5% solution of Na ₂ SO ₄ .10H ₂ O (MW = 322) is isotome with 270 and Market	1
49)	A 5% solution of Na ₂ SO ₄ .10H ₂ O (MW = 322) to volatile substance X. Find out the molecular weight of X. (a) Arrange the isomeric dichlorobenzene in the increasing order of their boiling point and melting points.	1
219/		
	(b)Explain why the electrophilic substitution benzene. drastic conditions as compared to those in benzene.	1
_20)	drastic conditions as compared to those in a compared to the compare	1
		1
	Convert the following: (a) Benzene to m-nitrobenzaldehyde (b) Bromehannes to benzeig seid	1
217	(b) Bromobenzene to benzoic acid (a) DNA fingerprinting is used to determine paternity of an individual. Which property of DNA helps	1
	in the procedure? (b) What structural change will occur when a native protein is subjected to change in pH?	1
	CECTION C	
	This section contains 7 questions with internal choice in two questions. The following questions are short answer type and carry 3 marks each.	
.22	(a) Write the formula for the following coordination compound Bis-(ethane-1,2-diamine)	1
		1
	(b) Does ionization isomer for the following compound exist? Justify your answer. Hg[Co(SCN) ₄] (c) Is the central metal atom in coordination complexes a Lewis acid or a Lewis base? Explain.	1
237	(a) Calculate the λ ⁰ m for Cl- ion from the data given below:	1
	Λ^{0} m MgCl ₂ = 258.6 Scm ² mol ⁻¹ and Λ^{0} m Mg ²⁺ = 106 Scm ² mol ⁻¹	2
	(b) The cell constant of a conductivity cell is 0.146 cm ⁻¹ . What is the conductivity of 0.01 M solution of an electrolyte at 298 K, if the resistance of the cell is 1000 ohm?	
200	Write the name of the reaction, structure and IUPAC name of the product formed when:	1
24/	(a) Phenol reacts with CHCl ₃ in the presence of NaOH followed by hydrolysis. (b) CH ₃ CH ₂ CH(CH ₃)CH(CH ₃)ONa reacts with C ₂ H ₅ Br	1
	(c) CH ₃ CH ₂ CN reacts with stannous chloride in the presence of hydrochloric acid followed by hydrolysis	1
25)	You are given four organic compounds "A", "B", "C" and "D". The compounds "A", "B" and "C" form an orange- red precipitate with 2,4 DNP reagent. Compounds "A" and "B" reduce Tollen's reagent while compounds "C" and "D" do not. Both "B" and "C" give a yellow precipitate when heated with iodine in the presence of NaOH. Compound "D" gives brisk effervescence with sodium bicarbonate solution. Identify "A", "B", "C" and "D" given the number of carbon atoms in three of these carbon compounds is three while one has two carbon atoms. Give an explanation for your answer.	3

When sucrose is hydrolysed the optical rotation values are measured using a polarimeter and are given in the follows:

5.No.	Time (hours)	Specific Rotation
	0	+ 66.5°
2	co	-39.9°

- (a) Account for the two specific rotation values.
- (b) What is the specific name given to sucrose based on the above observation?
- (c) One of the products formed during the hydrolysis of sucrose is a glucose, that reacts with hydroxylamine to give compound A. Identify compound A.
- An organic compound A with the molecular formula (+) C₄H₉Br undergoes hydrolysis to form 3 (+) - C₄H₉OH. Give the structure of A and write the mechanism of the reaction.
- The rate constants of a reaction at 200K and 500K are 0.02s⁻¹ and 0.20s⁻¹ respectively. Calculate the value of Ea (Given 2.303R = 19.15 JK-1mol-1)

SECTION D

The following questions are case-based questions. Each question has an internal choice and carries 4.(1+1+2) marks each. Read the passage carefully and answer the questions that follow.

Metal complexes show different colours due to d-d transitions. The complex absorbs light of specific wavelength to promote the electron from t2g to eg level. The colour of the complex is due to the transmitted light, which is complementary of the colour absorbed.

The wave number of light absorbed by different complexes of Cr ion are given below:

Complex	Wavenumber of light absorbed (cm-1)	Energy of light absorbed(kJ/mol	
[CtVe]s-	13640	163	
[CrBe]3+	17830	213	
[CrC ₆]s÷	21680	259	
[CrD ₆]3-	26280	314	

Answer the following questions:

(d).

(a) Out of the ligands "A", "B", "C" and "D", which ligand causes maximum crystal field splitting? Why?

OR

Which of the two, "A" or "D" will be a weak field ligand? Why?

- (b) Which of the complexes will be violet in colour? [CrA 6]3- or [CrB6]3+ and why? (Given: If 560 570 nm of light is absorbed, the colour of the complex observed is violet.)
- (c) If the ligands attached to Cr3+ ion in the complexes given in the table above are water, cyanide ion, chloride ion, and ammonia (not in this order)
- (tl)Identify the ligand, write the formula and IUPAC name of the following: (i) [CrA6]3- (ii) [CrC6]3+

Page 5 of 8

1

1

1

The lead-acid battery represents the oldest rechargeable battery technology. Lead acid batteries can be found in a wide variety of applications including small-scale power storage such as UPS systems, ignition power sources for automobiles, along with large, grid-scale power systems. The spongy lead act as the anode and lead dioxide as the cathode. Aqueous sulphuric acid is used as an electrolyte.

The cell reactions when the battery is in use are given below:

Anode: $Pb(s) + SO_4^2(aq) \rightarrow PbSO_4(s) + 2e^{-s}$

Cathode: $PbO_2(s) + SO_4^2(aq) + 4H'(aq) + 2e^- \rightarrow PbSO_4(s) + 2H_2O(l)$

Lead and sulphuric acid are extremely hazardous and pollute soil, water as well as air. Irrespective of the environmental challenges it poses, lead-acid batteries have remained an important source of energy.

Designing green and sustainable battery systems as alternatives to conventional means remains relevant. Fuel cells are seen as the future source of energy. Problem with fuel cells at present is the storage of hydrogen. Despite being the most abundant element in the Universe, hydrogen does not exist on its own so needs to be extracted from the water using electrolysis or separated from carbon fossil fuels.

Answer the following questions:

(a) How many coulombs have been transferred from anode to cathode in order to consume one mole of sulphuric acid during the discharging of lead storage cell?

the write the chemical reaction taking place in Hydrogen - Oxygen fuel cell.

voltage? (1 F = 96500 C)

OR

His Name one substance that can substitute Hydrogen in a fuel cell.

(iii) The cell potential of mercury cell remains constant during its life. Why?

SECTION E

The following questions are long answer type and carry 5 marks each. All questionshave an internal choice.

Blackish brown coloured solid (A) which is an oxide of manganese, when fused with alkali metal hydroxide and an oxidizing agent like KNO₃, produces a dark green coloured compound (B). Compound (B) on disproportionation in neutral and acidic solution gives a purple coloured compound (C). Identify A, B and C and write the reaction involved when compound (C) is heated to 513 K.

E⁰ M³⁺ / M²⁺ values for the first series of transition elements are given below.

E ₀ (V)	Ti	V	Cr	Mn	Fe	Co
M^{3+}/M^{2+}	-0.37	-0.26	-0.41	+1.57	+0:77 2	+1.97

Identify the two strongest oxidizing agents in the aqueous solution from the above data.

OR

1

1

2

(a) Write balanced equations to represent what happens when

(i) Cu2+ is treated with KI.

(ii) Acidified potassium dichromate solution is reacted with iron (II) solution.(ionic equation)

(b) The figure given below illustrates the first ionization enthalpies of first, second and third series of transition elements.

(i) Which series amongst the first, second and third series of transition elements have the highest first ionization enthalpy and why?

(ii) Separation of lanthanide elements is difficult. Explain.

(iii) Sm²⁺, Eu²⁺ and Yb²⁺ ions in solutions are good reducing agents but an aqueous solution of Ce⁴⁺ is a good oxidizing agent. Why?

32 Consider following diagram:

-(i)Name the law on which the diagram is based.

_(iff) State the law.

(iii) What is the effect of pressure on the phenomenon shown in the diagram?

(IV) Give one application of the law

(b) Assuming complete ionization, calculate the expected freezing point of solution prepared by dissolving 10 g of Glauber's salt (Na₂SO₄.10H₂O), in 0.1 kg of water.

(Kr for water = 1.86 K kgmol-1, Atomic masses Na=23, S=32, H=1, O=16 u)

OR

- (a) Assuming 84 % dimerization of acid Calculate the boiling point of a solution containing 0.61 g of benzoic acid (C6H5COOH) in 5 g of CS2,: (Boiling point of CS2 is 46.2 C, molal elevation constant of CS2 is 2.3 K kgmol-1. (Atomic mass H = 1,C = 12, O = 16, and S = 32 u)
- (b) When equal volumes of liquid A and B are mixed at same temperature, the solution becomes warmer.
- (i) What type of deviation is shown by this mixture?

Page 7 of S

2

3

2

- (ii) Explain the reason for this observation.
- (iii) Draw a vapour pressure diagram for the same.

A mixture of two compounds A and B was separated by dissolving in chloroform followed by extraction with aqueous KOH solution. The organic layer containing A when heated with alcoholic KOH produced a compound C (C₇H₅N) associated with unpleasant odor. The alkaline aqueous layer on the other hand when heated with chloroform and then acidified gives a mixture of two isomeric compounds D and E of molecular formula C₇H₆O₂. Identity A to E and write their structure

OR

(a) How will you convert :

Hifty-Nitrotoluene to 2-bromobenzoic acid?

Aniline into 1,3,5 - tribromobenzene.

(b) Account for the following:

Hit Gabriel phthalimide synthesis is preferred for synthesising primary amine.

(iii) Aniline is acetylated first to prepare 4- Bromoaniline.

rimary amines have higher boiling point than tertiary amines.
