EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Let $\mathrm{A}=\{a, b, c\}$ and the relation R be defined on A as follows:

$$
\mathrm{R}=\{(a, a),(b, c),(a, b)\}
$$

Then, write minimum number of ordered pairs to be added in R to make R reflexive and transitive.
Sol. Here,

$$
\mathrm{R}=\{(a, a),(b, c),(a, b)\}
$$

for reflexivity; $(b, b),(c, c)$ and for transitivity; (a, c)
Hence, the required ordered pairs are $(b, b),(c, c)$ and (a, c)
Q2. Let D be the domain of the real valued function f defined by $f(x)=\sqrt{25-x^{2}}$. Then write D.
Sol. Here, $f(x)=\sqrt{25-x^{2}}$
For real value of $f(x), 25-x^{2} \geq 0$
$\Rightarrow-x^{2} \geq-25 \Rightarrow x^{2} \leq 25 \Rightarrow-5 \leq x \leq 5$
Hence, $\mathrm{D} \in-5 \leq x \leq 5$ or $[-5,5]$
Q3. Let $f, g: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=2 x+1$ and $g(x)=x^{2}-2 \forall$ $x \in \mathrm{R}$, respectively. Then find $g o f$.
Sol. Here, $f(x)=2 x+1$ and $g(x)=x^{2}-2$
$\therefore \quad g o f=g[f(x)]$

$$
=[2 x+1]^{2}-2=4 x^{2}+4 x+1-2=4 x^{2}+4 x-1
$$

Hence, $g o f=4 x^{2}+4 x-1$
Q4. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be the function defined by $f(x)=2 x-3 \forall x \in \mathrm{R}$. Write f^{-1}.
Sol. Here, $\quad f(x)=2 x-3$
Let
$f(x)=y=2 x-3$
$\Rightarrow \quad y+3=2 x \Rightarrow x=\frac{y+3}{2}$
$\therefore \quad f^{-1}(y)=\frac{y+3}{2}$ or $f^{-1}(x)=\frac{x+3}{2}$
Q5. If $\mathrm{A}=\{a, b, c, d\}$ and the function $f=\{(a, b),(b, d),(c, a),(d, c)\}$, write f^{-1}.
Sol. Let

$$
\begin{aligned}
y & =f(x) \quad \therefore x=f^{-1}(y) \\
f & =\{(a, b),(b, d),(c, a),(d, c)\} \\
f^{-1} & =\{(b, a),(d, b),(a, c),(c, d)\}
\end{aligned}
$$

\therefore If
then

Q6. If $f: \mathrm{R} \rightarrow \mathrm{R}$ is defined by $f(x)=x^{2}-3 x+2$, write $f[f(x)]$.
Sol. Here,

$$
f(x)=x^{2}-3 x+2
$$

$$
\begin{aligned}
\therefore \quad f[f(x)] & =[f(x)]^{2}-3 f(x)+2 \\
& =\left(x^{2}-3 x+2\right)^{2}-3\left(x^{2}-3 x+2\right)+2 \\
& =x^{4}+9 x^{2}+4-6 x^{3}+4 x^{2}-12 x-3 x^{2}+9 x-6+2 \\
& =x^{4}-6 x^{3}+10 x^{2}-3 x
\end{aligned}
$$

Hence, $f[f(x)]=x^{4}-6 x^{3}+10 x^{2}-3 x$
Q7. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? If g is described by $g(x)=\alpha x+\beta$, then what value should be assigned to α and β ?
Sol. Yes, Here,

$$
g=\{(1,1),(2,3),(3,5),(4,7)\} \text { is a function. }
$$

For (1, 1),

$$
g(x)=\alpha x+\beta
$$

$$
g(1)=\alpha .1+\beta
$$

$$
\begin{equation*}
1=\alpha+\beta \tag{1}
\end{equation*}
$$

For $(2,3)$,

$$
\begin{align*}
g(2) & =\alpha .2+\beta \\
3 & =2 \alpha+\beta \tag{2}
\end{align*}
$$

Solving eqs. (1) and (2) we get, $\alpha=2, \beta=-1$
Q8. Are the following set of ordered pairs functions? If so, examine whether the mapping is injective or surjective.
(i) $\{(x, y): x$ is a person, y is the mother of $x\}$
(ii) $\{(a, b): a$ is a person, b is an ancestor of $a\}$

Sol. (i) It represents a function. The image of distinct elements of x under f are not distinct. So, it is not injective but it is surjective.
(ii) It does not represent a function as every domain under mapping does not have a unique image.
Q9. If the mapping f and g are given by
$f=\{(1,2),(3,5),(4,1)\} \quad$ and $g=\{(2,3),(5,1),(1,3)\}$ write fog.
Sol.

$$
\begin{aligned}
f \circ g & =f[g(x)] \\
& =f[g(2)]=f(3)=5 \\
& =f[g(5)]=f(1)=2 \\
& =f[g(1)]=f(3)=5
\end{aligned}
$$

Hence, $\quad f \circ g=\{(2,5),(5,2),(1,5)\}$
Q10. Let C be the set of complex numbers. Prove that the mapping $f: \mathrm{C} \rightarrow$ R given by $f(z)=|z|, \forall z \in \mathrm{C}$, is neither one-one nor onto.
Sol. Here,

$$
\begin{aligned}
f(z) & =|z| \quad \forall z \in C \\
f(1) & =|1|=1 \\
f(-1) & =|-1|=1 \\
f(1) & =f(-1) \\
1 & \neq-1
\end{aligned}
$$

But
Therefore, it is not one-one.

Now, let $f(z)=y=|z|$. Here, there is no pre-image of negative numbers. Hence, it is not onto.
Q11. Let the function $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=\cos x, \forall x \in \mathrm{R}$. Show that f is neither one-one nor onto.
Sol. Here, $\quad f(x)=\cos x \forall x \in \mathrm{R}$
Let $\quad\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \in f(x)$
$f\left(-\frac{\pi}{2}\right)=\cos \left(-\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$ $\cos \left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$f\left(-\frac{\pi}{2}\right)=f\left(\frac{\pi}{2}\right)=0$
But $-\frac{\pi}{2} \neq \frac{\pi}{2}$
Therefore, the given function is not one-one. Also it is not onto function as no pre-image of any real number belongs to the range of $\cos x$ i.e., $[-1,1]$.
Q12. Let $X=\{1,2,3\}$ and $Y=\{4,5\}$. Find whether the following subsets of $\mathrm{X} \times \mathrm{Y}$ are functions from X to Y or not.
(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$
(ii) $g=\{(1,4),(2,4),(3,4)\}$
(iii) $h=\{(1,4),(2,5),(3,5)\}$
(iv) $k=\{(1,4),(2,5)\}$

Sol. Here, given that $X=\{1,2,3\}, Y=\{4,5\}$
$\therefore \mathrm{X} \times \mathrm{Y}=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$
(i) $f=\{(1,4),(1,5),(2,4),(3,5)\}$
f is not a function because there is no unique image of each element of domain under f.
(ii) $g=\{(1,4),(2,4),(3,4)\}$

Yes, g is a function because each element of its domain has a unique image.
(iii) $h=\{(1,4),(2,5),(3,5)\}$

Yes, it is a function because each element of its domain has a unique image.
(iv) $k=\{(1,4),(2,5)\}$

Clearly k is also a function.

Q13. If function $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{A}$ satisfy $g o f=\mathrm{I}_{\mathrm{A}^{\prime}}$, then show that f is one-one and g is onto.
Sol. Let $x_{1}, x_{2} \in g o f$

$$
\begin{aligned}
& \operatorname{gof}\left\{f\left(x_{1}\right)\right\}=\operatorname{gof}\left\{f\left(x_{2}\right)\right\} \\
& \Rightarrow \quad g\left(x_{1}\right)=g\left(x_{2}\right) \quad\left[\because g o f=\mathrm{I}_{\mathrm{A}}\right] \\
& \therefore \quad x_{1}=x_{2}
\end{aligned}
$$

Hence, f is one-one. But g is not onto as there is no pre-image of A in B under g.
Q14. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be the function defined by $f(x)=\frac{1}{2-\cos x}$, $\forall x \in \mathrm{R}$. Then, find the range of f.
Sol. Given function is $f(x)=\frac{1}{2-\cos x}, \forall x \in \mathrm{R}$.
Range of $\cos x$ is $[-1,1]$
Let $\quad f(x)=y=\frac{1}{2-\cos x}$
$\Rightarrow \quad 2 y-y \cos x=1 \quad \Rightarrow \quad y \cos x=2 y-1$
$\Rightarrow \quad \cos x=\frac{2 y-1}{y}=2-\frac{1}{y}$
Now $-1 \leq \cos x \leq 1$
$\Rightarrow \quad-1 \leq 2-\frac{1}{y} \leq 1 \Rightarrow-1-2 \leq-\frac{1}{y} \leq 1-2$
$\Rightarrow \quad-3 \leq-\frac{1}{y} \leq-1 \Rightarrow 3 \geq \frac{1}{y} \geq 1 \Rightarrow \frac{1}{3} \leq y \leq 1$
Hence, the range of $f=\left[\frac{\mathbf{1}}{\mathbf{3}}, \mathbf{1}\right]$.
Q15. Let n be a fixed positive integer. Define a relation R in Z as follows $\forall a, b \in \mathrm{Z}, a \mathrm{R} b$ if and only if $a-b$ is divisible by n. Show that R is an equivalence relation.
Sol. Here, $\forall a, b \in \mathrm{Z}$ and $a \mathrm{R} b$ if and only if $a-b$ is divisible by n. The given relation is an equivalence relation if it is reflexive, symmetric and transitive.
(i) Reflexive:
$a \mathrm{R} a \Rightarrow(a-a)=0$ divisible by n
So, R is reflexive.
(ii) Symmetric:
$a \mathrm{R} b=b \mathrm{R} a \quad \forall a, b \in \mathrm{Z}$
$a-b$ is divisible by n (Given)
$\Rightarrow-(b-a)$ is divisible by n
$\Rightarrow b-a$ is divisible by n
$\Rightarrow b \mathrm{R} a$
Hence, R is symmetric.
(iii) Transitive:
$a \mathrm{R} b$ and $b \mathrm{R} c \Leftrightarrow a \mathrm{R} c \quad \forall a, b, c \in \mathrm{Z}$
$a-b$ is divisible by n
$b-c$ is also divisible by n
$\Rightarrow(a-b)+(b-c)$ is divisible by n
$\Rightarrow(a-c)$ is divisible by n
Hence, R is transitive.
So, R is an equivalence relation.

LONG ANSWER TYPE QUESTIONS

Q16. If $\mathrm{A}=\{1,2,3,4\}$, define relations on A which have properties of being.
(a) reflexive, transitive but not symmetric.
(b) symmetric but neither reflexive nor transitive
(c) reflexive, symmetric and transitive.

Sol. Given that $\mathrm{A}=\{1,2,3,4\}$

$$
\begin{aligned}
\therefore \quad \mathrm{ARA}= & \{(1,1),(2,2),(3,3),(4,4),(1,2),(1,3),(1,4),(2,3), \\
& (2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3)\}
\end{aligned}
$$

(a) Let $\mathrm{R}_{1}=\{(1,1),(2,2),(1,2),(2,3),(1,3)\}$

So, R_{1} is reflexive and transitive but not symmetric.
(b) Let $\mathrm{R}_{2}=\{(2,3),(3,2)\}$

So, R_{2} is only symmetric.
(c) Let $\mathrm{R}_{3}=\{(1,1),(1,2),(2,1),(2,4),(1,4)\}$

So, R_{3} is reflexive, symmetric and transitive.
Q17. Let R be relation defined on the set of natural number N as follows:
$\mathrm{R}=\{(x, y): x \in \mathrm{~N}, y \in \mathrm{~N}, 2 x+y=41\}$. Find the domain and range of the relation R . Also verify whether R is reflexive, symmetric and transitive.
Sol. Given that $x \in \mathrm{~N}, y \in \mathrm{~N}$ and $2 x+y=41$
$\therefore \quad$ Domain of $\mathrm{R}=\{1,2,3,4,5, \ldots, 20\}$
and \quad Range $=\{39,37,35,33,31, \ldots, 1\}$
Here, $\quad(3,3) \notin R$
as $\quad 2 \times 3+3 \neq 41$
So, R is not reflexive.
R is not symmetric as $(2,37) \in R$ but $(37,2) \notin R$
R is not transitive as $(11,19) \in R$ and $(19,3) \in R$
but $(11,3) \notin R$.
Hence, R is neither reflexive, nor symmetric and nor transitive.

Q18. Given $A=\{2,3,4\}, B=\{2,5,6,7\}$, construct an example of each of the following:
(i) an injective mapping from A to B .
(ii) a mapping from A to B which is not injective
(iii) a mapping from B to A.

Sol. Here, $A=\{2,3,4\}$ and $B=\{2,5,6,7\}$
(i) Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be the mapping from A to B $f=\{(x, y): y=x+3\}$
$\therefore f=\{(2,5),(3,6),(4,7)\}$ which is an injective mapping.
(ii) Let $g: \mathrm{A} \rightarrow \mathrm{B}$ be the mapping from $\mathrm{A} \rightarrow \mathrm{B}$ such that $g=\{(2,5),(3,5),(4,2)\}$ which is not an injective mapping.
(iii) Let $h: \mathrm{B} \rightarrow \mathrm{A}$ be the mapping from B to A $h=\{(y, x): x=y-2\}$
$h=\{(5,3),(6,4),(7,3)\}$ which is the mapping from B to A.
Q19. Give an example of a map
(i) which is one-one but not onto.
(ii) which is not one-one but onto.
(iii) which is neither one-one nor onto.

Sol. (i) Let $f: \mathrm{N} \rightarrow \mathrm{N}$ given by $f(x)=x^{2}$
Let $x_{1}, x_{2} \in \mathrm{~N}$ then $f\left(x_{1}\right)=x_{1}^{2}$ and $f\left(x_{2}\right)=x_{2}^{2}$
Now, $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}^{2}=x_{2}^{2} \Rightarrow x_{1}^{2}-x_{2}^{2}=0$

$$
\Rightarrow\left(x_{1}+x_{2}^{2}\right)\left(x_{1}-x_{2}\right)=0
$$

Since $x_{1}, x_{2} \in \mathrm{~N}$, so $x_{1}+x_{2}=0$ is not possible.

$$
\begin{aligned}
\therefore & x_{1}-x_{2}=0 & \Rightarrow x_{1}=x_{2} \\
\therefore & f\left(x_{1}\right) & =f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

So, $f(x)$ is one to one function.
Now, Let $f(x)=5 \in \mathrm{~N}$
then

$$
x^{2}=5 \Rightarrow x= \pm \sqrt{5} \notin \mathrm{~N}
$$

So, f is not onto.
Hence, $f(x)=x^{2}$ is one-one but not onto.
(ii) Let $f: \mathrm{N} \times \mathrm{N}$, defined by $f(n)=\left\{\begin{array}{cl}\frac{n+1}{2} & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even }\end{array}\right.$

Since $f(1)=f(2)$ but $1 \neq 2$,
So, f is not one-one.
Now, let $y \in N$ be any element.
Then $f(n)=y$
$\left.\Rightarrow \quad \begin{array}{ll}\frac{n+1}{2} & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even }\end{array}\right\}=y$

$$
\begin{array}{ll}
\Rightarrow & n=2 y-1 \\
n=2 y & \text { if } y \text { is even } \\
& \text { if } y \text { is odd or even } \\
\Rightarrow & n=\left\{\begin{aligned}
2 y-1 & \text { if } y \text { is even } \\
2 y & \text { if } y \text { is odd or even }
\end{aligned} \in \mathrm{N} \forall y \in \mathrm{~N}\right.
\end{array}
$$

\therefore Every $y \in \mathrm{~N}$ has pre-image
$\therefore f$ is onto.

$$
n=\left\{\begin{array}{c}
2 y-1 \text { if } y \text { is even } \\
2 y \text { if } y \text { is odd or even }
\end{array} \quad \in \mathrm{N}\right.
$$

Hence, f is not one-one but onto.
(iii) Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined as $f(x)=x^{2}$

Let $x_{1}=2$ and $x_{2}=-2$

$$
\begin{aligned}
f\left(x_{1}\right) & =x_{1}^{2}=(2)^{2}=4 \\
f\left(x_{2}\right) & =x_{2}^{2}=(-2)^{2}=4 \\
f(2) & =f(-2) \quad \text { but } 2 \neq-2
\end{aligned}
$$

So, it is not one-one function.
Let $f(x)=-2 \Rightarrow x^{2}=-2 \quad \therefore \quad x= \pm \sqrt{-2} \notin \mathrm{R}$
Which is not possible, so f is not onto.
Hence, f is neither one-one nor onto.
Q20. Let $\mathrm{A}=\mathrm{R}-\{3\}, \mathrm{B}=\mathrm{R}-\{1\}$. Let $f: \mathrm{A} \rightarrow \mathrm{B}$ be defined by $f(x)=\frac{x-2}{x-3}, \forall x \in \mathrm{~A}$. Then, show that f is bijective.
Sol. Here, $A \in R-\{3\}, B=R-\{1\}$
Given that $f: \mathrm{A} \rightarrow \mathrm{B}$ defined by $f(x)=\frac{x-2}{x-3} \forall x \in \mathrm{~A}$.
Let $x_{1}, x_{2} \in f(x)$

$$
\begin{array}{lc}
\therefore & f\left(x_{1}\right)=f\left(x_{2}\right) \\
\Rightarrow & \frac{x_{1}-2}{x_{1}-3}=\frac{x_{2}-2}{x_{2}-3} \\
\Rightarrow & \left(x_{1}-2\right)\left(x_{2}-3\right)=\left(x_{2}-2\right)\left(x_{1}-3\right) \\
\Rightarrow & x x_{1} x_{2}-3 x_{1}-2 x_{2}+\neq x_{1} / x_{2}-3 x_{2}-2 x_{1}+\not \subset \\
\Rightarrow & -x_{1}=-x_{2} \Rightarrow \quad x_{1}=x_{2}
\end{array}
$$

So, it is injective function.
Now, Let $\quad y=\frac{x-2}{x-3}$
$\Rightarrow x y-3 y=x-2 \Rightarrow x y-x=3 y-2$
$\Rightarrow x(y-1)=3 y-2 \Rightarrow x=\frac{3 y-2}{y-1}$

$$
\begin{aligned}
& f(x)=\frac{x-2}{x-3}=\frac{\frac{3 y-2}{y-1}-2}{\frac{3 y-2}{y-1}-3} \Rightarrow \frac{3 y-2-2 y+2}{3 y-2-3 y+3} \Rightarrow y \\
& \Rightarrow \quad f(x)=y \in \text { B. }
\end{aligned}
$$

So, $f(x)$ is surjective function.
Hence, $f(x)$ is a bijective function.
Q21. Let $\mathrm{A}=[-1,1]$, then discuss whether the following functions defined on A are one-one, onto or bijective.
(i) $f(x)=\frac{x}{2}$
(ii) $g(x)=|x|$
(iii) $h(x)=x|x|$ (iv) $k(x)=x^{2}$

Sol. (i) Given that $-1 \leq x \leq 1$
Let $x_{1}, x_{2} \in f(x)$

$$
\begin{aligned}
& (x) \\
& f\left(x_{1}\right)=\frac{1}{x_{1}} \text { and } f\left(x_{2}\right)=\frac{1}{x_{2}} \\
& f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow \frac{1}{x_{1}}=\frac{1}{x_{2}} \Rightarrow x_{1}=x_{2} \\
& \text { e-one function. }
\end{aligned}
$$

So, $f(x)$ is one-one function.
Let

$$
f(x)=y=\frac{x}{2} \quad \Rightarrow \quad x=2 y
$$

For $y=1, x=2 \notin[-1,1]$
So, $f(x)$ is not onto. Hence, $f(x)$ is not bijective function.
(ii) Here,

$$
\begin{aligned}
g(x) & =|x| \\
g\left(x_{1}\right) & =g\left(x_{2}\right) \quad \Rightarrow\left|x_{1}\right|=\left|x_{2}\right| \quad \Rightarrow \quad x_{1}= \pm x_{2}
\end{aligned}
$$

So, $g(x)$ is not one-one function.
Let $g(x)=y=|x| \quad \Rightarrow \quad x= \pm y \notin \mathrm{~A} \forall y \in \mathrm{~A}$
So, $g(x)$ is not onto function.
Hence, $g(x)$ is not bijective function.
(iii) Here,

$$
\text { Here, } \quad \begin{aligned}
h(x) & =x|x| \\
\Rightarrow \quad & \\
\Rightarrow\left(x_{1}\right) & =h f\left(x_{2}\right) \\
x_{1}\left|x_{1}\right| & =x_{2}\left|x_{2}\right| \Rightarrow x_{1}=x_{2}
\end{aligned}
$$

So, $h(x)$ is one-one function.
Now, let $\quad h(x)=y=x|x|=x^{2}$ or $-x^{2}$
$\Rightarrow \quad x= \pm \sqrt{-y} \notin \mathrm{~A} \forall y \in \mathrm{~A}$
$\therefore h(x)$ is not onto function.
Hence, $h(x)$ is not bijective function.
(iv) Here,

$$
k(x)=x^{2}
$$

$$
k\left(x_{1}\right)=k\left(x_{2}\right)
$$

$\Rightarrow \quad x_{1}^{2}=x_{2}^{2} \Rightarrow x_{1}= \pm x_{2}$
So, $k(x)$ is not one-one function.
Now, let $k(x)=y=x^{2} \Rightarrow x= \pm \sqrt{y}$

If $y=-1 \quad \Rightarrow \quad x= \pm \sqrt{-1} \notin \mathrm{~A} \forall y \in \mathrm{~A}$
$\therefore k(x)$ is not onto function.
Hence, $k(x)$ is not a bijective function.
Q22. Each of the following defines a relation of N
(i) x is greater than $y, x, y \in \mathrm{~N}$
(ii) $x+y=10, x, y \in \mathrm{~N}$
(iii) $x y$ is square of an integer $x, y \in \mathrm{~N}$
(iv) $x+4 y=10, x, y \in \mathrm{~N}$.

Determine which of the above relations are reflexive, symmetric and transitive.
Sol. (i) x is greater than $y, \quad x, y \in \mathrm{~N}$
For reflexivity $x>x \forall x \in \mathrm{~N}$ which is not true
So, it is not reflexive relation.
Now, $x>y$ but $y \ngtr x \forall x, y \in \mathrm{~N}$
$\Rightarrow x \mathrm{R} y$ but $y \mathrm{R} x$
So, it is not symmetric relation.
For transitivity, $\quad x \mathrm{R} y, y \mathrm{R} z \Rightarrow \quad x \mathrm{R} z \forall x, y, z \in \mathrm{~N}$ $\Rightarrow x>y, y>z \Rightarrow x>z$
So, it is transitive relation.
(ii) Here, $\quad \mathrm{R}=\{(x, y): x+y=10 \forall x, y \in \mathrm{~N}\}$
$\mathrm{R}=\{(1,9),(2,8),(3,7),(4,6),(5,5),(6,4),(7,3),(8,2),(9,1)\}$
For reflexive: $5+5=10,5 \mathrm{R} 5 \Rightarrow(x, x) \in \mathrm{R}$
So, R is reflexive.
For symmetric: $(1,9) \in R$ and $(9,1) \in R$
So, R is symmetric.
For transitive: $(3,7) \in R,(7,3) \in R$ but $(3,3) \notin R$
So, R is not transitive.
(iii) Here, $\mathrm{R}=\{(x, y): x y$ is a square of an integer, $x, y \in \mathrm{~N}\}$

For reflexive: $x \mathrm{R} x=x . x=x^{2}$ is an integer
$[\because$ Square of an integer is also an integer]
So, R is reflexive.
For symmetric: $x \mathrm{R} y=y \mathrm{R} x \forall x, y \in \mathrm{~N}$
$\therefore \quad x y=y x \quad$ (integer)
So, it is symmetric.
For transitive: $x \mathrm{R} y$ and $y \mathrm{R} z \Rightarrow x \mathrm{R} z$
Let

$$
\begin{aligned}
x y & =k^{2} \quad \text { and } \quad y z=m^{2} \\
x & =\frac{k^{2}}{y} \quad \text { and } \quad z=\frac{m^{2}}{y}
\end{aligned}
$$

$\therefore \quad x z=\frac{k^{2} m^{2}}{y^{2}}$ which is again a square of an integer.
So, R is transitive.
(iv) Here, $\quad \mathrm{R}=\{(x, y): x+4 y=10, x, y \in \mathrm{~N}\}$

$$
R=\{(2,2),(6,1)\}
$$

For reflexivity: $(2,2) \in R$
So, R is reflexive.
For symmetric: $\quad(x, y) \in \mathrm{R} \quad$ but $\quad(y, x) \notin \mathrm{R}$
$(6,1) \in R$ but $(1,6) \notin R$
So, R is not symmetric.
For transitive: $(x, y) \in \mathrm{R}$ but $(y, z) \notin \mathrm{R}$ and $(x, z) \in \mathrm{R}$
So, R is not transitive.
Q23. Let $A=\{1,2,3, \ldots, 9\}$ and R be the relation in $A \times A$ defined by $(a, b) \mathrm{R}(c, d)$ if $a+d=b+c$ for $(a, b),(c, d)$ in $\mathrm{A} \times \mathrm{A}$. Prove that R is an equivalence relation and also obtain equivalent class $[(2,5)]$.
Sol. Here,

$$
A=\{1,2,3, \ldots, 9\}
$$

and $\mathrm{R} \rightarrow \mathrm{A} \times$ A defined by $(a, b) \mathrm{R}(c, d) \Rightarrow a+d=b+c$
$\forall(a, b),(c, d) \in \mathrm{A} \times \mathrm{A}$
For reflexive: $(a, b) \mathrm{R}(a, b)=a+b=b+a \quad \forall a, b \in \mathrm{~A}$ which is true. So, R is reflexive.
For symmetric: $(a, b) \mathrm{R}(c, d)=(c, d) \mathrm{R}(a, b)$
L.H.S. $a+d=b+c$
R.H.S. $\quad c+b=d+a$
L.H.S. $=$ R.H.S. So, R is symmetric.

For transitive: $(a, b) \mathrm{R}(c, d)$ and $(c, d) \mathrm{R}(e, f) \Leftrightarrow(a, b) \mathrm{R}(e, f)$
$\Rightarrow \quad a+d=b+c$ and $c+f=d+e$
$\Rightarrow \quad a+d=b+c$ and $d+e=c+f$
$\Rightarrow(a+d)-(d+e)=(b+c)-(c+f)$
$\Rightarrow \quad a-e=b-f$
$\Rightarrow \quad a+f=b+e$
$\Rightarrow \quad(a, b) \mathrm{R}(e, f)$
So, R is transitive.
Hence, R is an equivalence relation.
Equivalent class of $\{(2,5)\}$ is $\{(1,4),(2,5),(3,6),(4,7),(5,8),(6,9)\}$
Q24. Using the definition, prove that the function $f: \mathrm{A} \rightarrow \mathrm{B}$ is invertible if and only if f is both one-one and onto.
Sol. A function $f: X \rightarrow Y$ is said to be invertible if there exists a function $g: \mathrm{Y} \rightarrow \mathrm{X}$ such that gof $=\mathrm{I}_{\mathrm{X}}$ and fog $=\mathrm{I}_{\mathrm{Y}}$ and then the inverse of f is denoted by f^{-1}.
A function $f: \mathrm{X} \rightarrow \mathrm{Y}$ is said to be invertible iff f is a bijective function.
Q25. Function $f, g: R \rightarrow R$ are defined, respectively, by $f(x)=x^{2}+3 x+1$, $g(x)=2 x-3$, find
(i) $f \circ g$
(ii) gof
(iii) fof
(iv) gog

Sol. (i) \quad fog $\Rightarrow f[g(x)]=[g(x)]^{2}+3[g(x)]+1$

$$
\begin{align*}
& =(2 x-3)^{2}+3(2 x-3)+1 \\
& =4 x^{2}+9-12 x+6 x-9+1=4 x^{2}-6 x+1 \\
g \circ f \Rightarrow g[f(x)] & =2\left[x^{2}+3 x+1\right]-3 \\
& =2 x^{2}+6 x+2-3=2 x^{2}+6 x-1 \\
f \circ f \Rightarrow f[f(x)]= & {[f(x)]^{2}+3[f(x)]+1 } \tag{iii}\\
& =\left(x^{2}+3 x+1\right)^{2}+3\left(x^{2}+3 x+1\right)+1 \\
& =x^{4}+9 x^{2}+1+6 x^{3}+6 x+2 x^{2}+3 x^{2}+9 x+3+1 \\
& =x^{4}+6 x^{3}+14 x^{2}+15 x+5
\end{align*}
$$

(iv) $g o g \Rightarrow g[g(x)]=2[g(x)]-3=2(2 x-3)-3=4 x-6-3=4 x-9$

Q26. Let * be the binary operation defined on Q. Find which of the following binary operations are commutative.
(i) $a * b=a-b \forall a, b \in \mathrm{Q}$
(ii) $a * b=a^{2}+b^{2} \forall a, b \in \mathrm{Q}$
(iii) $a * b=a+a b \forall a, b \in \mathrm{Q}$
(iv) $a * b=(a-b)^{2} \forall a, b \in \mathrm{Q}$

Sol. (i)

$$
a * b=a-b \in \mathrm{Q} \quad \forall a, b \in \mathrm{Q} .
$$

So, * is binary operation.
$a * b=a-b$ and $b * a=b-a \quad \forall a, b \in \mathrm{Q}$
$a-b \neq b-a$
So, $*$ is not commutative.
(ii) $a * b=a^{2}+b^{2} \in \mathrm{Q}$, so $*$ is a binary operation.

$$
a * b=b * a
$$

$\Rightarrow \quad a^{2}+b^{2}=b^{2}+a^{2} \quad \forall a, b \in \mathrm{Q}$
Which is true. So, $*$ is commutative.
(iii) $a * b=a+a b \in \mathrm{Q}$, so $*$ is a binary operation.

$$
a * b=a+a b \quad \text { and } \quad b * a=b+b a
$$

$a+a b \neq b+b a \Rightarrow a * b \neq b * a \quad \forall a, b \in \mathrm{Q}$.
So, $*$ is not commutative.
(iv) $a * b=(a-b)^{2} \in \mathrm{Q}$, so $*$ is binary operation.
$a * b=(a-b)^{2}$ and $b * a=(b-a)^{2}$
$a * b=b * a \Rightarrow(a-b)^{2}=(b-a)^{2} \quad \forall a, b \in \mathrm{Q}$.
So, $*$ is commutative.
Q27. If $*$ be binary operation defined on R by $a * b=1+a b \forall a, b \in \mathbf{R}$.
Then, the operation $*$ is
(i) commutative but not associative
(ii) associative but not commutative
(iii) neither commutative nor associative
(iv) both commutative and associative

Sol. (i): Given that
$a * b=1+a b \quad \forall a, b \in \mathrm{R}$
and $\quad b * a=1+b a \quad \forall a, b \in \mathrm{R}$
$a * b=b * a=1+a b$
So, $*$ is commutative.
Now $a *(b * c)=(a * b) * c \quad \forall a, b, c \in R$
L.H.S. $a *(b * c)=a *(1+b c)=1+a(1+b c)=1+a+a b c$
R.H.S. $(a * b) * c=(1+a b) * c=1+(1+a b) \cdot c=1+c+a b c$

$$
\text { L.H.S. } \neq \text { R.H.S. }
$$

So, $*$ is not associative.
Hence, * is commutative but not associative.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer out of the given four options in each of the Exercises from 28 to 47 (M.C.Q.)

Q28. Let T be the set of all triangles in the Euclidean plane and let a relation R on T be defined as $a \mathrm{R} b$, if a is congruent to $b, \forall a$, $b \in \mathrm{~T}$. Then R is
(a) Reflexive but not transitive
(b) Transitive but not symmetric
(c) Equivalence
(d) None of these

Sol. If $a \cong b \forall a, b \in \mathrm{~T}$
then $a \mathrm{R} a \Rightarrow a \cong a$ which is true for all $a \in \mathrm{~T}$
So, R is reflexive.
Now, $a \mathrm{R} b$ and $b \mathrm{R} a$.
i.e., $a \cong b$ and $b \cong a$ which is true for all $a, b \in \mathrm{~T}$

So, R is symmetric.
Let $a \mathrm{R} b$ and $b \mathrm{R} c$.
$\Rightarrow a \cong b$ and $b \cong a \Rightarrow a \cong c \forall a, b, c \in \mathrm{~T}$
So, R is transitive.
Hence, R is equivalence relation.
So, the correct answer is (c).
Q29. Consider the non-empty set consisting of children in a family and a relation R defined as $a \mathrm{R} b$, if a is brother of b. Then R is
(a) symmetric but not transitive
(b) transitive but not symmetric
(c) neither symmetric nor transitive
(d) both symmetric and transitive

Sol. Here, $a \mathrm{R} b \Rightarrow a$ is a brother of b.
$a \mathrm{R} a \Rightarrow a$ is a brother of a which is not true.
So, R is not reflexive.
$a \mathrm{R} b \Rightarrow a$ is a brother of b.
$b \mathrm{R} a \Rightarrow$ which is not true because b may be sister of a.
$\Rightarrow a \mathrm{R} b \neq b \mathrm{R} a$
So, R is not symmetric.
Now, $a \mathrm{R} b, b \mathrm{R} c \Rightarrow a \mathrm{R} c$
$\Rightarrow a$ is the brother of b and b is the brother of c.
$\therefore a$ is also the brother of c.

So, R is transitive.
Hence, correct answer is (b).
Q30. The maximum number of equivalence relations on the set $\mathrm{A}=\{1,2,3\}$ are
(a) 1
(b) 2
(c) 3
(d) 5

Sol. Here, $\mathrm{A}=\{1,2,3\}$
The number of equivalence relations are as follows:
$\mathrm{R}_{1}=\{(1,1),(1,2),(2,1),(2,3),(1,3)\}$
$R_{2}=\{(2,2),(1,3),(3,1),(3,2),(1,2)\}$
$\mathrm{R}_{3}=\{(3,3),(1,2),(2,3),(1,3),(3,2)\}$
Hence, correct answer is (d)
Q31. If a relation R on the set $\{1,2,3\}$ be defined by $R=\{(1,2)\}$, then R is
(a) reflexive
(b) transitive
(c) symmetric
(d) None of these

Sol. Given that: $\mathrm{R}=\{(1,2)\}$
$a R^{\prime} a$, so it is not reflexive.
$a \mathrm{R} b$ but $b \mathbb{X} a$, so it is not symmetric.
$a \mathrm{R} b$ and $b \mathrm{R} c \Rightarrow a \mathrm{R} c$ which is true.
So, R is transitive.
Hence, correct answer is (b).
Q32. Let us define a relation R in R as $a \mathrm{R} b$ if $a \geq b$. Then R is
(a) an equivalence relation
(b) reflexive, transitive but not symmetric
(c) symmetric, transitive but not reflexive
(d) neither transitive nor reflexive but symmetric.

Sol. Here, $a \mathrm{R} b$ if $a \geq b$
$\Rightarrow a \mathrm{R} a \Rightarrow a \geq a$ which is true, so it is reflexive.
Let $a \mathrm{R} b \Rightarrow a \geq b$, but $b \nsucceq a$, so $b \mathrm{R} a$
R is not symmetric.
Now, $a \geq b, b \geq c \Rightarrow a \geq c$ which is true.
So, R is transitive.
Hence, correct answer is (b).
Q33. Let $\mathrm{A}=\{1,2,3\}$ and consider the relation
$R=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$, then R is
(a) reflexive but not symmetric
(b) reflexive but not transitive
(c) symmetric and transitive
(d) neither symmetric nor transitive.

Sol. Given that: $\mathrm{R}=\{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}$

Here, 1 R 1, 2 R 2 and 3 R 3, so R is reflexive.
1 R 2 but $2 R 1$ or $2 R 3$ but $3 R 2$, so, R is not symmetric.
1 R 1 and $1 \mathrm{R} 2 \Rightarrow 1 \mathrm{R} 3$, so, R is transitive.
Hence, the correct answer is (a).
Q34. The identity element for the binary operation * defined on $\mathrm{Q} \sim\{0\}$ as $a * b=\frac{a b}{2} \forall a, b \in \mathrm{Q} \sim\{0\}$ is
(a) 1
(b) 0
(c) 2
(d) None of these

Sol. Given that: $a * b=\frac{a b}{2} \forall a, b \in \mathrm{Q}-\{0\}$
Let e be the identity element

$$
\therefore \quad a * e=\frac{a e}{2}=a \Rightarrow e=2
$$

Hence, the correct answer is (c).
Q35. If the set A contains 5 elements and set B contains 6 elements, then the number of one-one and onto mapping from A to B is
(a) 720
(b) 120
(c) 0
(d) None of these

Sol. If A and B sets have m and n elements respectively, then the number of one-one and onto mapping from A to B is
$n!$ if $m=n$
and 0 if $m \neq n$
Here,

$$
\begin{aligned}
m & =5 \text { and } n=6 \\
5 & \neq 6
\end{aligned}
$$

So, number of mapping $=0$
Hence, the correct answer is (c).
Q36. Let $\mathrm{A}=\{1,2,3, \ldots, n\}$ and $\mathrm{B}=\{a, b\}$. Then the number of surjections from A to B is
(a) ${ }^{n} \mathrm{P}_{2}$
(b) $2^{n}-2$
(c) $2^{n}-1$
(d) None of these

Sol. Here, $\mathrm{A}=\{1,2,3, \ldots, n\}$ and $\mathrm{B}=\{a, b\}$
Let m be the number of elements of set A and n be the number of elements of set B
\therefore Number of surjections from A to B is
${ }^{n} C_{m} \times m!$ as $n \geq m$
Here, $m=2$ (given)
\therefore Number of surjections from A to $\mathrm{B}={ }^{n} \mathrm{C}_{2} \times 2$!

$$
=\frac{n!}{2!(n-2)!} \times 2!=\frac{n(n-1)(n-2)!}{2!(n-2)!} \times 2=n(n-1)=n^{2}-n
$$

Hence, the correct answer is (d).
Q37. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=\frac{1}{x}, \forall x \in \mathrm{R}$ then f is
(a) one-one
(b) onto
(c) bijective
(d) f is not defined

Sol. Given that $f(x)=\frac{1}{x}$
Put $x=0 \quad \therefore \quad f(x)=\frac{1}{0}=\infty$
So, $f(x)$ is not defined.
Hence, the correct answer is (d).
Q38. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=3 x^{2}-5$ and $g: \mathrm{R} \rightarrow \mathrm{R}$ by $g(x)=\frac{x}{x^{2}+1}$, then $g o f$ is
(a) $\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}$
(b) $\frac{3 x^{2}-5}{9 x^{4}-6 x^{2}+26}$
(c) $\frac{3 x^{2}}{x^{4}+2 x^{2}-4}$
(d) $\frac{3 x^{2}}{9 x^{4}+30 x^{2}-2}$

Sol. Here, $f(x)=3 x^{2}-5$ and $g(x)=\frac{x}{x^{2}+1}$

$$
\begin{aligned}
\therefore \quad g \circ f & =g o f(x)=g\left[3 x^{2}-5\right] \\
& =\frac{3 x^{2}-5}{\left(3 x^{2}-5\right)^{2}+1}=\frac{3 x^{2}-5}{9 x^{4}+25-30 x^{2}+1} \\
\therefore \quad g \circ f & =\frac{3 x^{2}-5}{9 x^{4}-30 x^{2}+26}
\end{aligned}
$$

Hence, the correct answer is (a).
Q39. Which of the following functions from Z to Z are bijections?
(a) $f(x)=x^{3}$
(b) $f(x)=x+2$
(c) $f(x)=2 x+1$
(d) $f(x)=x^{2}+1$

Sol. Given that $f: Z \rightarrow Z$
Let $x_{1}, x_{2} \in f(x) \Rightarrow f\left(x_{1}\right)=x_{1}+2, f\left(x_{2}\right)=x_{2}+2$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}+2=x_{2}+2 \Rightarrow x_{1}=x_{2}$
So, $f(x)$ is one-one function.
Now, let $y=x+2 \therefore x=y-2 \in Z \quad \forall y \in Z$
So, $f(x)$ is onto function.
$\therefore f(x)$ is bijective function.
Hence, the correct answer is (b).
Q40. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be the functions defined by $f(x)=x^{3}+5$. Then $f^{-1}(x)$ is
(a) $(x+5)^{1 / 3}$
(b) $(x-5)^{1 / 3}$
(c) $(5-x)^{1 / 3}$
(d) $5-x$

Sol. Given that $f(x)=x^{3}+5$
Let $\quad y=x^{3}+5 \Rightarrow x^{3}=y-5$
$\therefore \quad x=(y-5)^{1 / 3} \Rightarrow f^{-1}(x)=(x-5)^{1 / 3}$
Hence, the correct answer is (b).

Q41. Let $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be the bijective functions. Then $(g o f)^{-1}$ is
(a) $f^{-1} g^{-1}$
(b) $f o g$
(c) $g^{-1} o f^{-1}$
(d) $g \circ f$

Sol. Here, $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$
$\therefore \quad(g o f)^{-1}=f^{-1} g^{-1}$
Hence, the correct answer is (a).
Q42. Let $f: \mathrm{R}-\left\{\frac{3}{5}\right\} \rightarrow \mathrm{R}$ be defined by $f(x)=\frac{3 x+2}{5 x-3}$, then
(a) $f^{-1}(x)=f(x)$
(b) $f^{-1}(x)=-f(x)$
(c) $(f \circ f) x=-x$
(d) $f^{-1}(x)=\frac{1}{19} f(x)$

Sol. Given that $f(x)=\frac{3 x+2}{5 x-3} \quad \forall x \neq \frac{3}{5}$
Let $\quad y=\frac{3 x+2}{5 x-3}$
$\Rightarrow \quad y(5 x-3)=3 x+2$
$\Rightarrow \quad 5 x y-3 y=3 x+2$
$\Rightarrow \quad 5 x y-3 x=3 y+2$
$\Rightarrow \quad x(5 y-3)=3 y+2$
$\Rightarrow \quad x=\frac{3 y+2}{5 y-3}$
$\Rightarrow \quad f^{-1}(x)=\frac{3 x+2}{5 x-3}$
$\Rightarrow \quad f^{-1}(x)=f(x)$
Hence, the correct answer is (a).
Q43. Let $f:[0,1] \rightarrow[0,1]$ be defined by $f(x)=\left\{\begin{array}{cc}x, & \text { if } x \text { is rational } \\ 1-x, & \text { if } x \text { is irrational }\end{array}\right.$. Then (fof) x is
(a) constant
(b) $1+x$
(c) x
(d) None of these

Sol. Given that $f:[0,1] \rightarrow[0,1]$
$\therefore \quad f=f^{-1}$
So, $\quad(f o f) x=x$
(identity element)
Hence, correct answer is (c).
Q44. Let $f:[2, \infty) \rightarrow \mathrm{R}$ be the function defined by $f(x)=x^{2}-4 x+5$, then the range of f is
(a) R
(b) $[1, \infty)$
(c) $[4, \infty)$
(d) $[5, \infty)$

Sol. Given that $f(x)=x^{2}-4 x+5$

$$
\begin{aligned}
& \text { Let } \begin{aligned}
& y=x^{2}-4 x+5 \\
& \Rightarrow \quad x^{2}-4 x+5-y=0 \\
& \Rightarrow \quad x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times(5-y)}}{2 \times 1} \\
&=\frac{4 \pm \sqrt{16-20+4 y}}{2} \\
&=\frac{4 \pm \sqrt{4 y-4}}{2}=\frac{4 \pm 2 \sqrt{y-1}}{2}=2 \pm \sqrt{y-1}
\end{aligned}
\end{aligned}
$$

\therefore For real value of $x, y-1 \geq 0 \Rightarrow y \geq 1$.
So, the range is $[1, \infty)$.
Hence, the correct answer is (b).
Q45. Let $f: \mathrm{N} \rightarrow \mathrm{R}$ be the function defined by $f(x)=\frac{2 x-1}{2}$ and $g: \mathrm{Q} \rightarrow \mathrm{R}$ be another function defined by $g(x)=x+2$ then, $g o f\left(\frac{3}{2}\right)$ is
(a) 1
(b) -1
(c) $\frac{7}{2}$
(d) None of these

Sol. Here,

$$
f(x)=\frac{2 x-1}{2} \text { and } g(x)=x+2
$$

$$
\begin{aligned}
\therefore \quad g \circ f(x) & =g[(f(x)] \\
& =f(x)+2 \\
& =\frac{2 x-1}{2}+2=\frac{2 x+3}{2} \\
g \circ f\left(\frac{3}{2}\right) & =\frac{2 \times \frac{3}{2}+3}{2}=3
\end{aligned}
$$

Hence, the correct answer is (d).
Q46. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)= \begin{cases}2 x & : x>3 \\ x^{2}: 1<x \leq 3 \\ 3 x: & x \leq 1\end{cases}$ then $f(-1)+f(2)+f(4)$ is
(a) 9
(b) 14
(c) 5
(d) None of these

Sol. Given that:

$$
f(x)= \begin{cases}2 x: & x>3 \\ x^{2}: 1<x \leq 3 \\ 3 x: & x \leq 1\end{cases}
$$

$\therefore f(-1)+f(2)+f(4)=3(-1)+(2)^{2}+2(4)=-3+4+8=9$
Hence, the correct answer is (a).

Q47. If $f: \mathrm{R} \rightarrow \mathrm{R}$ be given by $f(x)=\tan x$, then $f^{-1}(1)$ is
(a) $\frac{\pi}{4}$
(b) $\left\{n \pi+\frac{\pi}{4}: n \in \mathrm{Z}\right\}$
(c) does not exist
(d) None of these

Sol. Given that $f(x)=\tan x$
Let $\quad f(x)=y=\tan x \Rightarrow x=\tan ^{-1} y$
$\Rightarrow \quad f^{-1}(x)=\tan ^{-1}(x)$
$\Rightarrow \quad f^{-1}(1)=\tan ^{-1}(1)$
$\Rightarrow \quad f^{-1}(1)=\tan ^{-1}\left[\tan \left(\frac{\pi}{4}\right)\right]=\frac{\pi}{4}$
Hence, the correct answer is (a).
Fill in the Blanks in Each of the Exercises 48 to 52.
Q 48 . Let the relation R be defined in N by $a \mathrm{R} b$ if $2 a+3 b=30$. Then $R=$ \qquad
Sol. Given that $a \mathrm{R} b: 2 a+3 b=30$

$$
\begin{array}{ll}
\Rightarrow & \quad 3 b=30-2 a \\
\Rightarrow & \quad b=\frac{30-2 a}{3} \\
\text { for } & a=3, b=8 \\
& a=6, b=6 \\
& a=9, b=4 \\
& a=12, b=2
\end{array}
$$

Hence, $\quad R=\{(3,8),(6,6),(9,4),(12,2)\}$
Q49. Let the relation R be defined on the set
$A=\{1,2,3,4,5\}$ by $R=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$. Then R is given by
Sol. Given that $\mathrm{A}=\{1,2,3,4,5\}$ and $\mathrm{R}=\left\{(a, b):\left|a^{2}-b^{2}\right|<8\right\}$
So, clearly, $\quad R=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(4,3)$ $(3,4),(4,4),(5,5)\}$
Q50. Let $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$. Then $g o f=$ \qquad and $f \circ g=$
Sol. Here, $f=\{(1,2),(3,5),(4,1)\}$ and $g=\{(2,3),(5,1),(1,3)\}$

$$
\left.\begin{array}{rl}
g \circ f(1) & =g[f(1)]=g(2)=3 \\
g \circ f(3) & =g[f(3)]=g(5)=1 \\
g \circ f(4) & =g[f(4)]=g(1)=3 \\
\therefore \quad g o f & =\{(1,3),(3,1),(4,3)\} \\
& f \circ g(2)
\end{array}\right)=f[g(2)]=f(3)=5
$$

$$
\begin{array}{rlrl}
& f \circ g(5) & =f[g(5)]=f(1)=2 \\
& & f \circ g(1) & =f[g(1)]=f(3)=5 \\
\therefore \quad & f \circ g & =\{(2,5),(5,2),(1,5)\}
\end{array}
$$

Q51. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined by $f(x)=\frac{x}{\sqrt{1+x^{2}}}$, then $(f \circ f \circ f)(x)=$ \qquad
Sol. Here, $f(x)=\frac{x}{\sqrt{1+x^{2}}} \forall x \in \mathrm{R}$
$f \circ f \circ f(x)=f \circ f[f(x)]=f[f\{f(x)\}]$

$$
=f\left[f\left(\frac{x}{\sqrt{1+x^{2}}}\right)\right]=f\left[\frac{\frac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+\frac{x^{2}}{1+x^{2}}}}\right]
$$

$$
=f\left[\frac{\frac{x}{\sqrt{1+x^{2}}}}{\frac{\sqrt{1+x^{2}+x^{2}}}{\sqrt{1+x^{2}}}}\right]=f\left[\frac{x}{\sqrt{1+2 x^{2}}}\right]
$$

$$
=\left[\frac{\frac{x}{\sqrt{1+2 x^{2}}}}{\sqrt{1+\frac{x^{2}}{1+2 x^{2}}}}\right]=\left[\frac{\frac{x}{\sqrt{1+2 x^{2}}}}{\frac{\sqrt{1+2 x^{2}+x^{2}}}{\sqrt{1+2 x^{2}}}}\right]=\frac{x}{\sqrt{1+3 x^{2}}}
$$

Hence, $f \circ f \circ f(x)=\frac{x}{\sqrt{3 x^{2}+1}}$
Q52. If $f(x)=\left[4-(x-7)^{3}\right]$, then $f^{-1}(x)=$
Sol. Given that, $f(x)=\left[4-(x-7)^{3}\right]$
Let $\quad y=\left[4-(x-7)^{3}\right]$
$\Rightarrow \quad(x-7)^{3}=4-y$
$\Rightarrow \quad x-7=(4-y)^{1 / 3} \Rightarrow x=7+(4-y)^{1 / 3}$
Hence,
$f^{-1}(x)=7+(4-x)^{1 / 3}$
State True or False for the Statements in each of the Exercises 53 to 62.

Q53. Let $\mathrm{R}=\{(3,1),(1,3),(3,3)\}$ be a relation defined on the set $A=\{1,2,3\}$. Then R is symmetric, transitive but not reflexive.
Sol. Here,

$$
R=\{(3,1),(1,3),(3,3)\}
$$

$(3,3) \in R$, so R is reflexive.
$(3,1) \in R$ and $(1,3) \in R$, so R is symmetric.
Now, $(3,1) \in R$ and $(1,3) \in R$ but $(1,1) \notin R$
So, R is not transitive.
Hence, the statement is 'False'.
Q54. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be the function defined by $f(x)=\sin (3 x+2) \forall x \in \mathrm{R}$, then f is invertible.
Sol. Given that: $f(x)=\sin (3 x+2) \forall x \in \mathrm{R}$, $f(x)$ is not one-one.
Hence, the statement is 'False'.
Q55. Every relation which is symmetric and transitive is also reflexive.
Sol. Let R be any relation defined on $\mathrm{A}=\{1,2,3\}$

$$
\mathrm{R}=\{(1,2),(2,1),(2,3),(1,3)\}
$$

Here, $(1,2) \in R$ and $(2,1) \in R$, so R is symmetric.
$(1,2) \in R,(2,3) \in R \Rightarrow(1,3) \in R$, so R is transitive.
But $(1,1) \notin R,(2,2) \notin R$ and $(3,3) \notin R$.
Hence, the statement is 'False'.
Q56. An integer m is said to be related to another integer n if m is an integral multiple of n. This relation in Z is reflexive, symmetric and transitive.
Sol. Here, $\quad m=k n \quad$ (where k is an integer)
If $k=1 \quad m=n$, so z is reflexive.
Clearly z is not symmetric but z is transitive.
Hence, the statement is 'False'.
Q57. Let $\mathrm{A}=\{0,1\}$ and N be the set of natural numbers then the mapping $f: \mathrm{N} \rightarrow$ A defined by $f(2 n-1)=0, f(2 n)=1, \forall n \in \mathrm{~N}$ is onto.
Sol. Given that $\quad \mathrm{A}=[0,1]$
$f(2 n-1)=0$ and $f(2 n)=1 \quad \forall n \in \mathrm{~N}$
So, $f: \mathrm{N} \rightarrow \mathrm{A}$ is a onto function.
Hence, the statement is 'True'.
Q58. The relation R on the set $A=\{1,2,3\}$ defined as
$R=\{(1,1),(1,2),(2,1),(3,3)\}$ is reflexive, symmetric and transitive.
Sol. Here,

$$
\mathrm{R}=\{(1,1),(1,2),(2,1),(3,3)\}
$$

Here, $(1,1) \in R$, so R is Reflexive.
$(1,2) \in R$ and $(2,1) \in R$, so R is Symmetric.
$(1,2) \in R$ but $(2,3) \notin R$
So, R is not transitive.
Hence, the statement is 'False'.
Q59. The composition of functions is commutative.
Sol. Let $f(x)=x^{2}$ and $g(x)=2 x+3$

$$
\begin{aligned}
f \circ g(x) & =f[g(x)]=(2 x+3)^{2}=4 x^{2}+9+12 x \\
g \circ f(x) & =g[f(x)]=2 x^{2}+3
\end{aligned}
$$

So, $\quad \quad \quad f \circ g(x) \neq g \circ f(x)$
Hence, the statement is 'False'.
Q60. The composition of functions is associative.
Sol. Let $f(x)=2 x, g(x)=x-1$ and $h(x)=2 x+3$

$$
\begin{aligned}
\text { fo }\{\operatorname{goh}(x)\} & =\text { fo }\{g(2 x+3)\} \\
& =f(2 x+3-1)=f(2 x+2)=2(2 x+2)=4 x+4 .
\end{aligned}
$$

and $\quad(f \circ g) o h(x)=(f \circ g)\{h(x)\}$
$=f \circ g(2 x+3)$
$=f(2 x+3-1)=f(2 x+2)=2(2 x+2)=4 x+4$
So, \quad fo $\{g o h(x)\}=\{(f \circ g) o h(x)\}=4 x+4$
Hence, the statement is 'True'.
Q61. Every function is invertible.
Sol. Only bijective functions are invertible.
Hence, the statement is 'False'.
Q62. A binary operation on a set has always the identity element.
Sol. ' + ' is a binary operation on the set N but it has no identity element.
Hence, the statement is 'False'.

