9.3 EXERCISE

SHORT ANSWER TYPE QUESTIONS

Q1. Find the solution of $\frac{d y}{d x}=2^{y-x}$.
Sol. The given differential equation is

$$
\frac{d y}{d x}=2^{y-x} \Rightarrow \frac{d y}{d x}=\frac{2^{y}}{2^{x}}
$$

Separating the variables, we get

$$
\frac{d y}{2^{y}}=\frac{d x}{2^{x}} \Rightarrow 2^{-y} d y=2^{-x} d x
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
\int 2^{-y} d y & =\int 2^{-x} d x \\
& & \\
& \frac{-2^{-y}}{\log 2} & =\frac{-2^{-x}}{\log 2}+c \quad \Rightarrow-2^{-y}=-2^{-x}+c \log 2 \\
\Rightarrow \quad-2^{-y}+2^{-x} & =c \log 2 \\
\Rightarrow \quad 2^{-x}-2^{-y} & =k & & \\
\Rightarrow \quad & & & \\
\hline
\end{array}
$$

Q2. Find the differential equation of all non vertical lines in a plane.
Sol. Equation of all non vertical lines are $y=m x+c$
Differentiating with respect to x, we get $\frac{d y}{d x}=m$
Again differentiating w.r.t. x we have $\frac{d^{2} y}{d x^{2}}=0$
Hence, the required equation is $\frac{d^{2} y}{d x^{2}}=0$.
Q3. Given that $\frac{d y}{d x}=e^{-2 y}$ and $y=0$ when $x=5$. Find the value of x when $y=3$.
Sol. Given equation is

$$
\begin{aligned}
\frac{d y}{d x} & =e^{-2 y} \\
\Rightarrow \quad \frac{d y}{e^{-2 y}} & =d x \Rightarrow e^{2 y} \cdot d y=d x
\end{aligned}
$$

Integrating both sides, we get

$$
\int e^{2 y} d y=\int d x \Rightarrow \frac{1}{2} e^{2 y}=x+c
$$

Put $y=0$ and $x=5$
$\Rightarrow \frac{1}{2} e^{0}=5+c \Rightarrow c=\frac{1}{2}-5=-\frac{9}{2}$
\therefore The equation becomes $\frac{1}{2} e^{2 y}=x-\frac{9}{2}$
Now putting $y=3$, we get

$$
\frac{1}{2} e^{6}=x-\frac{9}{2} \Rightarrow x=\frac{1}{2} e^{6}+\frac{9}{2}
$$

Hence the required value of $x=\frac{1}{2}\left(e^{6}+9\right)$.
Q4. Solve the differential equation $\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{1}{x^{2}-1}$.
Sol. Given differential equation is

$$
\left(x^{2}-1\right) \frac{d y}{d x}+2 x y=\frac{1}{x^{2}-1}
$$

Dividing by $\left(x^{2}-1\right)$, we get

$$
\frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{}{\left(x^{2}-1\right)^{2}}
$$

It is a linear differential equation of first order and first degree.
$\therefore \quad P=\frac{2 x}{x^{2}-1}$ and $Q=\frac{1}{\left(x^{2}-1\right)^{2}}$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2 x}{x^{2}-1} d x}=e^{\log \left(x^{2}-1\right)}=\left(x^{2}-1\right)$.
\therefore Solution of the equation is

$$
\begin{aligned}
& y \times \text { I.F. }=\int Q . \text { I.F. } d x+\text { C } \\
& \Rightarrow y \times\left(x^{2}-1\right)=\int \frac{1}{\left(x^{2}-1\right)^{2}} \times\left(x^{2}-1\right) d x+\text { C } \\
& \Rightarrow y\left(x^{2}-1\right)=\int \frac{1}{x^{2}-1} d x+C \Rightarrow y\left(x^{2}-1\right)=\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+C
\end{aligned}
$$

Hence the required solution is $y\left(x^{2}-1\right)=\frac{1}{2} \log \left|\frac{x-1}{x+1}\right|+C$.
Q5. Solve the differential equation $\frac{d y}{d x}+2 x y=y$.
Sol. Given equation is $\frac{d y}{d x}+2 x y=y$.

$$
\Rightarrow \quad \frac{d y}{d x}=y-2 x y \quad \Rightarrow \frac{d y}{d x}=y(1-2 x) \Rightarrow \frac{d y}{y}=(1-2 x) d x
$$

Integrating both sides, we have

$$
\begin{aligned}
& \int \frac{d y}{d y}=\int(1-2 x) d x \Rightarrow \log y=x-2 \cdot \frac{x^{2}}{2}+\log c \\
& \Rightarrow \quad \log y=x-x^{2}+\log c \Rightarrow \log y-\log c=x-x^{2} \\
& \Rightarrow \quad \log \frac{y}{c}=x-x^{2} \Rightarrow \frac{y}{c}=e^{x-x^{2}} \\
& \therefore \quad y=y=c \cdot e^{x-x^{2}}
\end{aligned}
$$

Hence, the required solution is $y=c . e^{x-x^{2}}$.
Q6. Find the general solution of $\frac{d y}{d x}+a y=e^{m x}$.
Sol. Given equation is $\frac{d y}{d x}+a y=e^{m x}$.
Here, $P=a$ and $Q=e^{m x}$
\therefore I.F $=e^{\int P d x}=e^{\int a . d x}=e^{a x}$.
Solution of equation is $y \times$ I.F $=\int Q$ I.F $d x+c$

$$
\begin{array}{ll}
\Rightarrow & y \cdot e^{a x}=\int e^{m x} \cdot e^{a x} d x+c \Rightarrow y \cdot e^{a x}=\int e^{(m+a) x} d x+c \\
\Rightarrow & y \cdot e^{a x}=\frac{e^{(m+a) x}}{(m+a)}+c \Rightarrow y=\frac{e^{(m+a) x}}{(m+a)} \cdot e^{-a x}+c \cdot e^{-a x} \\
\therefore & y=\frac{e^{m x}}{(m+a)}+c \cdot e^{-a x}
\end{array}
$$

Hence the required solution is $y=\frac{e^{m x}}{(m+a)}+c \cdot e^{-a x}$.
Q7. Solve the differential equation $\frac{d y}{d x}+1=e^{x+y}$.
Sol. Given that: $\frac{d y}{d x}+1=e^{x+y}$
Put $x+y=\mathrm{t}$

$$
\therefore \quad 1+\frac{d y}{d x}=\frac{d t}{d x}
$$

$$
\therefore \quad \frac{d t}{d x}=e^{t} \Rightarrow \frac{d t}{e^{t}}=d x \Rightarrow e^{-t} d t=d x
$$

Integrating both sides, we have

$$
\begin{gathered}
\int e^{-t} d t=\int d x \Rightarrow-e^{-t}=x+c \\
\Rightarrow \quad-e^{-(x+y)}=x+c \Rightarrow \frac{-1}{e^{x+y}}=x+c \Rightarrow(x+c) e^{x+y}=-1
\end{gathered}
$$

Hence, the required solution is $(x+c) \cdot e^{x} \quad y+1=0$.
Q8. Solve: $y d x-x d y=x^{2} y d x$.
Sol. Given equation is $y d x-x d y=x^{2} y d x$.

$$
\begin{aligned}
& \Rightarrow \quad y d x-x^{2} y d x=x d y \\
& \Rightarrow \quad y\left(1-x^{2}\right) d x=x d y \\
& \Rightarrow \quad\left(\frac{1-x^{2}}{x}\right) d x=\frac{d y}{y} \Rightarrow\left(\frac{1}{x}-x\right) d x=\frac{d y}{y}
\end{aligned}
$$

Integrating both sides we get

$$
\begin{aligned}
\int\left(\frac{1}{x}-x\right) d x & =\int \frac{d y}{y} \\
\Rightarrow \log x-\frac{x^{2}}{2} & =\log y+\log c \\
\Rightarrow \log x-\frac{x^{2}}{2} & =\log y c \Rightarrow \log x-\log c=\frac{x^{2}}{2} \Rightarrow \log \frac{x}{y c}=\frac{x^{2}}{2} \\
\Rightarrow \quad \frac{x}{y c} & =e^{x^{2} / 2} \Rightarrow \frac{y c}{x}=e^{-x^{2} / 2} \Rightarrow y c=x e^{-x^{2} / 2} \\
\therefore \quad y & =\frac{1}{c} \cdot x e^{-x^{2} / 2} \Rightarrow y=k x e^{-x^{2} / 2} \quad\left[\because k=\frac{1}{c}\right]
\end{aligned}
$$

Hence, the required solution is $y=k x e^{-x^{2} / 2}$.
Q9. Solve the differential equation $\frac{d y}{d x}=1+x+y^{2}+x y^{2}$, when $y=0, x=0$.
Sol. Given equation is

$$
\begin{aligned}
& \frac{d y}{d x}=1+x+y^{2}+x y^{2} \\
\Rightarrow \quad & \frac{d y}{d x}=1(1+x)+y^{2}(1+x) \\
\Rightarrow \quad \frac{d y}{d x} & =(1+x)\left(1+y^{2}\right) \Rightarrow \frac{d y}{1+y^{2}}=(1+x) d x
\end{aligned}
$$

Integrating both sides, we get

$$
\int \frac{d y}{1+y^{2}}=\int(1+x) d x \Rightarrow \tan ^{-1} y=x+\frac{x^{2}}{2}+c
$$

Put $x=0$ and $y=0$, we get $\tan ^{-1}(0)=0+0+c \Rightarrow c=0$

$$
\therefore \quad \tan ^{-1} y=x+\frac{x^{2}}{2} \Rightarrow y=\tan \left(x+\frac{x^{2}}{2}\right)
$$

Hence, the required solution is $y=\tan \left(x+\frac{x^{2}}{2}\right)$.
Q10. Find the general solution of $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$.
Sol. Given equation is $\left(x+2 y^{3}\right) \frac{d y}{d x}=y$
$\Rightarrow \quad \frac{d y}{d x}=\frac{y}{x+2 y^{3}} \Rightarrow \frac{d x}{d y}=\frac{x+2 y^{3}}{y}$
$\Rightarrow \quad \frac{d x}{d y}=\frac{x}{y}+\frac{2 y^{3}}{y} \Rightarrow \frac{d x}{d y}-\frac{x}{y}=2 y^{2}$
Here $P=-\frac{1}{y}$ and $Q=2 y^{2}$.
\therefore Integrating factor I.F. $=e^{\int P d y}=e^{\int-\frac{1}{y} d y}=e^{-\log y}=e^{\log \frac{1}{y}}=\frac{1}{y}$.
So the solution of the equation is

$$
\begin{aligned}
x . I . F . & =\int \text { Q.I.F. } d y+c \\
x \cdot \frac{1}{y} & =\int 2 y^{2} \cdot \frac{1}{y} d y+c \\
\Rightarrow \quad \frac{x}{y} & =2 \int y d y+c \Rightarrow \frac{x}{y}=2 \cdot \frac{y^{2}}{2}+c \Rightarrow \frac{x}{y}=y^{2}+c
\end{aligned}
$$

So $\quad x=y^{3}+c y=y\left(y^{2}+c\right)$
Hence, the required solution is $x=y\left(y^{2}+c\right)$.
Q11. If $y(x)$ is a solution of $\left(\frac{2+\sin x}{1+y}\right) \frac{d y}{d x}=-\cos x$ and $y(0)=1$, then find the value of $y\left(\frac{\pi}{2}\right)$.
Sol. Given equation is

$$
\begin{aligned}
& \left(\frac{2+\sin x}{1+y}\right) \frac{d y}{d x}=-\cos x \\
\Rightarrow & \left(\frac{2+\sin x}{\cos x}\right) \frac{d y}{d x}=-(1+y) \Rightarrow \frac{d y}{(1+y)}=-\left(\frac{\cos x}{2+\sin x}\right) d x
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
\int \frac{d y}{1+y} & =-\int \frac{\cos x}{2+\sin x} d x \\
\Rightarrow \quad \log |1+y| & =-\log |2+\sin x|+\log c \\
\Rightarrow \log |1+y|+\log |2+\sin x| & =\log c \\
\Rightarrow \quad \log (1+y)(2+\sin x) & =\log c \Rightarrow(1+y)(2+\sin x)=c
\end{aligned}
$$

Put $x=0$ and $y=1$, we get
$(1+1)(2+\sin 0)=c \quad \Rightarrow 4=c$
\therefore equation is $(1+y)(2+\sin x)=4$
Now put $x=\frac{\pi}{2}$
$\therefore \quad(1+y)\left(2+\sin \frac{\pi}{2}\right)=4$
$\Rightarrow \quad(1+y)(2+1)=4 \Rightarrow 1+y=\frac{4}{3} \Rightarrow y=\frac{4}{3}-1 \Rightarrow \frac{1}{3}$
So, $y\left(\frac{\pi}{2}\right)=\frac{1}{3}$
Hence, the required solution is $y\left(\frac{\pi}{2}\right)=\frac{1}{3}$.
Q12. If $y(t)$ is a solution of $(1+t) \frac{d y}{d t}-t y=1$ and $y(0)=-1$, then show that $y(1)=-\frac{1}{2}$.
Sol. Given equation is

$$
(1+t) \frac{d y}{d t}-t y=1 \Rightarrow \frac{d y}{d t}-\left(\frac{t}{1+t}\right) y=\frac{1}{1+t}
$$

Here, $P=\frac{-t}{1+t}$ and $Q=\frac{1}{1+t}$
\therefore Integrating factor I.F. $=e^{\int P d t}=e^{\int \frac{-t}{1+t} d t}=e^{-\int \frac{1+t-1}{1+t} d t}$

$$
\begin{aligned}
& =e^{-\int\left(1-\frac{1}{1+t}\right) d t}=e^{-[t-\log (1+t)]} \\
& =e^{-t+\log (1+t)}=e^{-t} \cdot e^{\log (1+t)}
\end{aligned}
$$

\therefore I.F. $=e^{-t} .(1+t)$

Required solution of the given differential equation is

$$
\begin{aligned}
& y \text {.I.F. }=\int Q . \text { I.F. } d t+c \\
& \Rightarrow \quad y \cdot e^{-t}(1+t)=\int \frac{1}{(1+t)} \cdot e^{-t} \cdot(1+t) d t+c \\
& \Rightarrow \quad y \cdot e^{-t}(1+t)=\int e^{-t} d t+c \\
& \Rightarrow \quad y \cdot e^{-t}(1+t)=-e^{-t}+c
\end{aligned}
$$

Put $t=0$ and $y=-1$

$$
\begin{aligned}
\Rightarrow & -1 \cdot e^{0} \cdot 1 & =-e^{0}+c \\
\Rightarrow & -1 & =-1+c \Rightarrow c=0
\end{aligned}
$$

So the equation becomes

$$
y e^{-t}(1+t)=-e^{-t}
$$

$$
\begin{aligned}
& \text { Now put } t=1 \\
& \begin{array}{l}
\therefore \\
\Rightarrow
\end{array} \quad y \cdot e^{-1}(1+1)=-e^{-1} \\
& \\
& \\
& 1 \quad 2 y=-1 \Rightarrow y=-\frac{1}{2}
\end{aligned}
$$

Hence $y(1)=-\frac{1}{2}$ is verified.
Q13. Form the differential equation having $y=\left(\sin ^{-1} x\right)^{2}+A$ $\cos ^{-1} x+B$ where A and B are arbitrary constants, as its general solution.
Sol. Given equation is $y=\left(\sin ^{-1} x\right)^{2}+A \cos ^{-1} x+B$

$$
\frac{d y}{d x}=2 \sin ^{-1} x \cdot \frac{1}{\sqrt{1-x^{2}}}+A \cdot\left(\frac{-1}{\sqrt{1-x^{2}}}\right)
$$

Multiplying both sides by $\sqrt{1-x^{2}}$, we get

$$
\sqrt{1-x^{2}} \frac{d y}{d x}=2 \sin ^{-1} x-A
$$

Again differentiating w.r.t x, we get

$$
\begin{aligned}
& \sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \cdot \frac{1 \times(-2 x)}{2 \sqrt{1-x^{2}}}=\frac{2}{\sqrt{1-x^{2}}} \\
\Rightarrow \quad & \sqrt{1-x^{2}} \frac{d^{2} y}{d x^{2}}-\frac{x}{\sqrt{1-x^{2}}} \frac{d y}{d x}=\frac{2}{\sqrt{1-x^{2}}}
\end{aligned}
$$

Multiplying both sides by $\sqrt{1-x^{2}}$, we get

$$
\Rightarrow \quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}-2=0
$$

Which is the required differential equation.

Q14. Form the differential equation of all circles which pass through origin and whose centres lie on y-axis.
Sol. Equation of circle which passes through the origin and whose centre lies on y-axis is

$$
\begin{align*}
& & (x-0)^{2}+(y-a)^{2} & =a^{2} \\
& \Rightarrow & x^{2}+y^{2}+a^{2}-2 a y & =a^{2} \\
\Rightarrow & & x^{2}+y^{2}-2 a y & =0 \tag{i}
\end{align*}
$$

Differentiating both sides w.r.t. x we get

$$
\begin{aligned}
\Rightarrow \quad 2 x+2 y \cdot \frac{d y}{d x}-2 a \cdot \frac{d y}{d x} & =0 \\
\Rightarrow \quad x+y \frac{d y}{d x}-a \cdot \frac{d y}{d x} & =0 \Rightarrow x+(y-a) \cdot \frac{d y}{d x}=0 \\
y-a & =\frac{x}{d y / d x} \\
\therefore \quad a & =y+\frac{-x}{d y / d x}
\end{aligned}
$$

Putting the value of a in eq. (i), we get

$$
\begin{aligned}
& x^{2}+y^{2}-2\left(y+\frac{x}{d y / d x}\right) y=0 \\
\Rightarrow & \quad x^{2}+y^{2}-2 y^{2}-\frac{2 x y}{\frac{d y}{d x}}=0 \quad \Rightarrow x^{2}-y^{2}=\frac{2 x y}{\frac{d y}{d x}} \\
\therefore & \quad\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0
\end{aligned}
$$

Hence, the required differential equation is

$$
\left(x^{2}-y^{2}\right) \frac{d y}{d x}-2 x y=0
$$

Q15. Find the equation of a curve passing through origin and satisfying the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2}$.
Sol. Given equation is

$$
\begin{aligned}
& \left(1+x^{2}\right) \frac{d y}{d x}+2 x y=4 x^{2} \\
& \Rightarrow \quad \frac{d y}{d x}+\frac{2 x}{1+x^{2}} \cdot y=\frac{4 x^{2}}{1+x^{2}}
\end{aligned}
$$

Here, $\mathrm{P}=\frac{2 x}{1+x^{2}}$ and $\mathrm{Q}=\frac{4 x^{2}}{1+x^{2}}$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=1+x^{2}$
\therefore Solution is

$$
\begin{align*}
& y \times \text { I.F. }=\int Q \times \text { I.F. } d x+c \\
& \Rightarrow y\left(1+x^{2}\right)=\int \frac{4 x^{2}}{1+x^{2}} \times\left(1+x^{2}\right) d x+c \\
& \Rightarrow \quad y\left(1+x^{2}\right)=\int 4 x^{2} d x+c \\
& \Rightarrow \quad y\left(1+x^{2}\right)=\frac{4}{3} x^{3}+c \tag{i}
\end{align*}
$$

Since the curve is passing through origin i.e., (0,0)
\therefore Put $y=0$ and $x=0$ in eq. (i)
$0(1+0)=\frac{4}{3}(0)^{3}+c \Rightarrow c=0$
\therefore Equation is $y\left(1+x^{2}\right)=\frac{4}{3} x^{3} \Rightarrow y=\frac{4 x^{3}}{3\left(1+x^{2}\right)}$
Hence, the required solution is $y=\frac{4 x^{3}}{3\left(1+x^{2}\right)}$.
Q16. Solve: $x^{2} \cdot \frac{d y}{d x}=x^{2}+x y+y^{2}$
Sol. Given equation is $x^{2} \frac{d y}{d x}=x^{2}+x y+y^{2}$

$$
\Rightarrow \quad \frac{d y}{d x}=\frac{x^{2}+x y+y^{2}}{x^{2}}
$$

$$
\text { Put } y=v x
$$

$$
\therefore \quad \frac{d y}{d x}=v+x \cdot \frac{d v}{d x}
$$

$$
\therefore \quad v+x \cdot \frac{d v}{d x}=\frac{x^{2}+v x^{2}+v^{2} x^{2}}{x^{2}}
$$

$$
\Rightarrow \quad v+x \cdot \frac{d v}{d x}=\frac{x^{2}\left(1+v+v^{2}\right)}{x^{2}}
$$

$$
\Rightarrow \quad v+x \cdot \frac{d v}{d x}=1+v+v^{2} \Rightarrow x \cdot \frac{d v}{d x}=1+v+v^{2}-v
$$

$$
\Rightarrow \quad x \cdot \frac{d v}{d x}=1+v^{2} \Rightarrow \frac{d v}{1+v^{2}}=\frac{d x}{x}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{d v}{1+v^{2}}
\end{aligned}=\int \frac{d x}{x} .
$$

Hence, the required solution is $\tan ^{-1}\left(\frac{y}{x}\right)=\log |x|+c$.
Q17. Find the general solution of the differential equation

$$
\left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0
$$

Sol. Given equation is

$$
\begin{aligned}
& \left(1+y^{2}\right)+\left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=0 \\
\Rightarrow & \left(x-e^{\tan ^{-1} y}\right) \frac{d y}{d x}=-\left(1+y^{2}\right) \Rightarrow \frac{d y}{d x}=\frac{-\left(1+y^{2}\right)}{x-e^{\tan ^{-1} y}} \\
\Rightarrow & \quad \frac{d x}{d y}=\frac{x-e^{\tan ^{-1} y}}{-\left(1+y^{2}\right)} \Rightarrow \frac{d x}{d y}=-\frac{x}{\left(1+y^{2}\right)}+\frac{e^{\tan ^{-1} y}}{1+y^{2}} \\
\Rightarrow & \frac{d x}{d y}+\frac{x}{\left(1+y^{2}\right)}=\frac{e^{\tan ^{-1} y}}{1+y^{2}}
\end{aligned}
$$

$$
\text { Here, } \mathrm{P}=\frac{1}{1+y^{2}} \text { and } \mathrm{Q}=\frac{e^{\tan ^{-1} y}}{1+y^{2}}
$$

\therefore Integrating factor I.F. $=e^{\int P d y}=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$
\therefore Solution is

$$
\begin{aligned}
x . \text { I.F. } & =\int \text { Q.I.F. } d y+c \\
\Rightarrow \quad x \cdot e^{\tan ^{-1} y} & =\int \frac{e^{\tan ^{-1} y}}{1+y^{2}} \cdot e^{\tan ^{-1} y} d y+c
\end{aligned}
$$

Put $e^{\tan ^{-1} y}=\mathrm{t}$
$\therefore e^{\tan ^{-1} y} \cdot \frac{1}{1+y^{2}} d y=d t$
$\therefore \quad x \cdot e^{\tan ^{-1} y}=\int t \cdot d t+c$
$\Rightarrow x \cdot e^{\tan ^{-1} y}=\frac{1}{2} t^{2}+c$

$$
\begin{aligned}
& \Rightarrow \quad x \cdot e^{\tan ^{-1} y}=\frac{1}{2}\left(e^{\tan ^{-1} y}\right)^{2}+c \Rightarrow x=\frac{1}{2}\left(e^{\tan ^{-1} y}\right)+\frac{c}{e^{\tan ^{-1} y}} \\
& \Rightarrow \quad 2 x=e^{\tan ^{-1} y}+\frac{2 c}{e^{\tan ^{-1} y}} \\
& \Rightarrow \quad 2 x \cdot e^{\tan ^{-1} y}=\left(e^{\tan ^{-1} y}\right)^{2}+2 c
\end{aligned}
$$

Hence, this is the required general solution.
Q18. Find the general solution of $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$.
Sol. The given equation is $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$.

$$
\begin{array}{ll}
\Rightarrow & y^{2} d x=-\left(x^{2}-x y+y^{2}\right) d y \\
\Rightarrow & \frac{d x}{d y}=-\frac{x^{2}-x y+y^{2}}{y^{2}}
\end{array}
$$

Since it is a homogeneous differential equation
\therefore Put $x=v y \Rightarrow \frac{d x}{d y}=v+y \cdot \frac{d v}{d y}$
So, $\quad v+y \cdot \frac{d v}{d y}=-\left(\frac{v^{2} y^{2}-v y^{2}+y^{2}}{y^{2}}\right)$
$\Rightarrow \quad v+y \cdot \frac{d v}{d y}=-\frac{y^{2}\left(v^{2}-v+1\right)}{y^{2}}$
$\Rightarrow \quad v+y \cdot \frac{d v}{d y}=\left(-v^{2}+v-1\right) \Rightarrow y \cdot \frac{d v}{d y}=-v^{2}+v-1-v$
$\Rightarrow \quad y \cdot \frac{d v}{d y}=-v^{2}-1 \Rightarrow \frac{d v}{\left(v^{2}+1\right)}=-\frac{d y}{y}$
Integrating both sides, we get

$$
\begin{aligned}
& \Rightarrow \quad \int \frac{d v}{\left(v^{2}+1\right)}=-\int \frac{d y}{y} \Rightarrow \tan ^{-1} v=-\log y+c \\
& \Rightarrow \quad \tan ^{-1}\left(\frac{x}{y}\right)+\log y+c
\end{aligned}
$$

Hence the required solution is $\tan ^{-1}\left(\frac{x}{y}\right)+\log y=c$.
Q19. Solve: $(x+y)(d x-d y)=d x+d y$.
[Hint: Substitute $x+y=z$ after separating $d x$ and $d y$]
Sol. Given differential equation is

$$
\begin{aligned}
& & (x+y)(d x-d y) & =d x+d y \\
\Rightarrow & & (x+y) d x-(x+y) d y & =d x+d y \\
\Rightarrow & & -(x+y) d y-d y & =d x-(x+y) d x
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & -(x+y+1) d y & =-(x+y-1) d x \\
\Rightarrow & \frac{d y}{d x} & =\frac{x+y-1}{x+y+1}
\end{aligned}
$$

Put $x+y=z$

$$
\begin{aligned}
\therefore \quad 1+\frac{d y}{d x} & =\frac{d z}{d x} \\
\frac{d y}{d x} & =\frac{d z}{d x}-1
\end{aligned}
$$

So, $\quad \frac{d z}{d x}-1=\frac{z-1}{z+1}$
$\Rightarrow \quad \frac{d z}{d x}=\frac{z-1}{z+1}+1 \Rightarrow \frac{d z}{d x}=\frac{z-1+z+1}{z+1}$
$\Rightarrow \quad \frac{d z}{d x}=\frac{2 z}{z+1} \Rightarrow \frac{z+1}{z} d z=2 . d x$
Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{z+1}{z} d z=2 \int d x \\
& \Rightarrow \quad \int\left(1+\frac{1}{z}\right) d z=2 \int d x \\
& \Rightarrow \quad z+\log |z|=2 x+\log |c| \\
& \Rightarrow \quad x+y+\log |x+y|=2 x+\log |c| \\
& \Rightarrow \quad y+\log |x+y|=x+\log |c| \\
& \Rightarrow \quad \log |x+y|=x-y+\log |c| \\
& \Rightarrow \log |x+y|-\log |c|=(x-y) \\
& \Rightarrow \quad \log \left|\frac{x+y}{c}\right|=(x-y) \Rightarrow \frac{x+y}{c}=e^{x-y} \\
& \therefore \quad x+y=c \cdot e^{x-y}
\end{aligned}
$$

Hence, the required solution is $x+y=c \cdot e^{x-y}$.
Q20. Solve: $2(y+3)-x y \cdot \frac{d y}{d x}=0$, given that $y(1)=-2$.
Sol. Given differential equation is

$$
\begin{aligned}
& 2(y+3)-x y \cdot \frac{d y}{d x}= \\
\Rightarrow \quad x y \cdot \frac{d y}{d x} & =2 y+6 \\
\Rightarrow \quad\left(\frac{y}{2 y+6}\right) d y & =\frac{d x}{x} \Rightarrow \frac{1}{2}\left(\frac{y}{y+3}\right) d y=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \Rightarrow \quad \frac{1}{2} \int \frac{y}{y+3} \cdot d y=\int \frac{d x}{x} \Rightarrow \frac{1}{2} \int \frac{y+3-3}{y+3} d y=\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{2} \int\left(1-\frac{3}{y+3}\right) d y=\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{2} \int 1 \cdot d y-\frac{3}{2} \int \frac{1}{y+3} d y=\int \frac{d x}{x} \\
& \Rightarrow \quad \frac{1}{2} y-\frac{3}{2} \log |y+3|=\log x+c \\
& \text { Put } x=1, y=-2
\end{aligned}
$$

$$
\Rightarrow \quad \frac{1}{2}(-2)-\frac{3}{2} \log |-2+3|=\log (1)+c
$$

$$
\Rightarrow \quad-1-\frac{3}{2} \log (1)=\log (1)+c
$$

$$
\Rightarrow \quad-1-0=0+c \quad[\because \log (1)=0]
$$

$$
\therefore \quad c=-1
$$

\therefore equation is

$$
\begin{array}{rlrl}
& & \frac{1}{2} y-\frac{3}{2} \log |y+3| & =\log x-1 \\
\Rightarrow & & y-3 \log |y+3| & =2 \log x-2 \\
\Rightarrow & y-\log \left|(y+3)^{3}\right| & =\log x^{2}-2 \\
\Rightarrow & & \log \left|(y+3)^{3}\right|+\log x^{2} & =y+2 \\
\Rightarrow & & \log \left|x^{2}(y+3)^{3}\right| & =y+2 \Rightarrow x^{2}(y+3)^{3}=e^{y+2}
\end{array}
$$

Hence, the required solution is $x^{2}(y+3)^{3}=e^{y+2}$.
Q21. Solve the differential equation $d y=\cos x(2-y \operatorname{cosec} x) d x$ given that $y=2$ when $x=\frac{\pi}{2}$.
Sol. The given differential equation is

$$
\begin{aligned}
d y & =\cos x(2-y \operatorname{cosec} x) d x \\
\Rightarrow \frac{d y}{d x} & =\cos x(2-y \operatorname{cosec} x) \Rightarrow \frac{d y}{d x}=2 \cos x-y \cos x \cdot \operatorname{cosec} x \\
\Rightarrow \frac{d y}{d x} & =2 \cos x-y \cot x \Rightarrow \frac{d y}{d x}+y \cot x=2 \cos x
\end{aligned}
$$

Here, $\mathrm{P}=\cot x$ and $\mathrm{Q}=2 \cos x$.
\therefore Integrating factor I.F. $=e^{\int P d x}=e^{\int \cot x d x}=e^{\log \sin x}=\sin x$
\therefore Required solution is $y \times \mathrm{I} . \mathrm{F}=\int Q \times \mathrm{I}$.F. $d x+c$

$$
\begin{aligned}
& \Rightarrow \quad y \cdot \sin x=\int 2 \cos x \cdot \sin x d x+c \\
& \Rightarrow \quad y \cdot \sin x=\int \sin 2 x d x+c \Rightarrow y \cdot \sin x=-\frac{1}{2} \cos 2 x+c \\
& \text { Put } x=\frac{\pi}{2} \text { and } y=2 \text {, we get } \\
& \qquad 2 \sin \frac{\pi}{2}=-\frac{1}{2} \cos \pi+c \\
& \Rightarrow \quad 2(1)=-\frac{1}{2}(-1)+c \Rightarrow 2=\frac{1}{2}+c \Rightarrow c=2-\frac{1}{2}=\frac{3}{2}
\end{aligned}
$$

\therefore The equation is $y \sin x=-\frac{1}{2} \cos 2 x+\frac{3}{2}$.
Q22. Form the differential equation by eliminating A and B in

$$
A x^{2}+B y^{2}=1
$$

Sol. Given that $A x^{2}+B y^{2}=1$
Differentiating w.r.t. x, we get

$$
\begin{aligned}
& & 2 A \cdot x+2 B y \frac{d y}{d x} & =0 \\
& \Rightarrow & A x+B y \cdot \frac{d y}{d x} & =0 \Rightarrow B y \cdot \frac{d y}{d x}=-A x \\
& \therefore & \frac{y}{x} \cdot \frac{d y}{d x} & =-\frac{A}{B}
\end{aligned}
$$

Differentiating both sides again w.r.t. x, we have

$$
\begin{aligned}
& \frac{y}{x} \cdot \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}\left(\frac{x \cdot \frac{d y}{d x}-y \cdot 1}{x^{2}}\right)=0 \\
\Rightarrow & \frac{y x^{2}}{x} \cdot \frac{d^{2} y}{d x^{2}}+x \cdot\left(\frac{d y}{d x}\right)^{2}-y \cdot \frac{d y}{d x}=0 \\
\Rightarrow & x y \cdot \frac{d^{2} y}{d x^{2}}+x \cdot\left(\frac{d y}{d x}\right)^{2}-y \cdot \frac{d y}{d x}=0 \Rightarrow x y \cdot y^{\prime \prime}+x \cdot\left(y^{\prime}\right)^{2}-y \cdot y^{\prime}=0
\end{aligned}
$$

Hence, the required equation is

$$
x y \cdot y^{\prime \prime}+x \cdot\left(y^{\prime}\right)^{2}-y \cdot y^{\prime}=0
$$

Q23. Solve the differential equation $\left(1+y^{2}\right) \tan ^{-1} x d x+2 y\left(1+x^{2}\right) d y=0$.
Sol. Given differential equation is

$$
\begin{aligned}
& \left(1+y^{2}\right) \tan ^{-1} x d x+2 y\left(1+x^{2}\right) d y=0 \\
& \Rightarrow \quad 2 y\left(1+x^{2}\right) d y=-\left(1+y^{2}\right) \cdot \tan ^{-1} x \cdot d x \\
& \Rightarrow \quad \frac{2 y}{1+y^{2}} d y=-\frac{\tan ^{-1} x}{1+x^{2}} \cdot d x
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{2 y}{1+y^{2}} d y \\
& =-\int \frac{\tan ^{-1} x}{1+x^{2}} \cdot d x \\
\Rightarrow \quad \log \left|1+y^{2}\right| & =-\frac{1}{2}\left(\tan ^{-1} x\right)^{2}+c \\
\Rightarrow \quad & \frac{1}{2}\left(\tan ^{-1} x\right)^{2}+\log \left|1+y^{2}\right|=c
\end{aligned}
$$

Which is the required solution.
Q24. Find the differential equation of system of concentric circles with centre $(1,2)$.
Sol. Family of concentric circles with centre $(1,2)$ and radius ' r ' is

$$
(x-1)^{2}+(y-2)^{2}=r^{2}
$$

Differentiating both sides w.r.t., x we get

$$
2(x-1)+2(y-2) \frac{d y}{d x}=0 \Rightarrow(x-1)+(y-2) \frac{d y}{d x}=0
$$

Which is the required equation.

LONG ANSWER TYPE QUESTIONS

Q25. Solve: $y+\frac{d}{d x}(x y)=x(\sin x+\log x)$
Sol. The given differential equation is

$$
\begin{gathered}
\\
\\
y+\frac{d}{d x}(x y)=x(\sin x+\log x) \\
\Rightarrow \quad \\
\Rightarrow \quad y+x \cdot \frac{d y}{d x}+y=x(\sin x+\log x) \\
\Rightarrow \quad \\
\Rightarrow \quad \frac{d y}{d x}=x(\sin x+\log x)-2 y \\
\Rightarrow \quad \\
=(\sin x+\log x)-\frac{2 y}{x} \Rightarrow \frac{d y}{d x}+\frac{2}{x} y=(\sin x+\log x)
\end{gathered}
$$

Here, $\mathrm{P}=\frac{2}{x}$ and $\mathrm{Q}=(\sin x+\log x)$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2}{x} d x}=e^{2 \log x}=e^{\log x^{2}}=x^{2}$
\therefore Solution is

$$
\begin{align*}
y \times \text { I.F. } & =\int \text { Q.I.F. } d x+c \\
\Rightarrow \quad y \cdot x^{2} & =\int(\sin x+\log x) x^{2} d x+c \tag{1}
\end{align*}
$$

Let I

$$
\begin{aligned}
& =\int(\sin x+\log x) x^{2} d x \\
& =\int_{\text {I }}^{2} x_{\text {II }}^{2} x d x+\int x_{\text {II }}^{2} \log x d x \\
& =\left[x^{2} \cdot \int \sin x d x-\int\left(D\left(x^{2}\right) \cdot \int \sin x d x\right) d x\right]+ \\
& \quad\left[\log x \cdot \int x^{2} d x-\int\left(D(\log x) \cdot \int x^{2} d x\right) d x\right] \\
& =\left[x^{2}(-\cos x)-2 \int-x \cos x d x\right]+\left[\log x \cdot \frac{x^{3}}{3}-\int \frac{1}{x} \cdot \frac{x^{3}}{3} d x\right] \\
& =\left[-x^{2} \cos x+2\left(x \sin x-\int 1 \cdot \sin x d x\right)\right]+\left[\frac{x^{3}}{3} \log x-\frac{1}{3} \int x^{2} d x\right] \\
& =-x^{2} \cos x+2 x \sin x+2 \cos x+\frac{x^{3}}{3} \log x-\frac{1}{9} x^{3}
\end{aligned}
$$

Now from eq (1) we get,

$$
\begin{aligned}
y \cdot x^{2} & =-x^{2} \cos x+2 x \sin x+2 \cos x+\frac{x^{3}}{3} \log x-\frac{1}{9} x^{3}+c \\
\therefore \quad y & =-\cos x+\frac{2 \sin x}{x}+\frac{2 \cos x}{x^{2}}+\frac{x \log x}{3}-\frac{1}{9} x+c \cdot x^{-2}
\end{aligned}
$$

Hence, the required solution is

$$
y=-\cos x+\frac{2 \sin x}{x}+\frac{2 \cos x}{x^{2}}+\frac{x \log x}{3}-\frac{1}{9} x+c \cdot x^{-2}
$$

Q26. Find the general solution of $(1+\tan y)(d x-d y)+2 x d y=0$.
Sol. Given that: $(1+\tan y)(d x-d y)+2 x d y=0$
$\Rightarrow \quad(1+\tan y) d x-(1+\tan y) d y+2 x d y=0$
$\Rightarrow \quad(1+\tan y) d x-(1+\tan y-2 x) d y=0$
$\Rightarrow \quad(1+\tan y) \frac{d x}{d y}=(1+\tan y-2 x) \Rightarrow \frac{d x}{d y}=\frac{1+\tan y-2 x}{1+\tan y}$
$\Rightarrow \quad \frac{d x}{d y}=1-\frac{2 x}{1+\tan y} \Rightarrow \frac{d x}{d y}+\frac{2 x}{1+\tan y}=1$
Here, $\mathrm{P}=\frac{2}{1+\tan y}$ and $\mathrm{Q}=1$
Integrating factor I.F.

$$
\begin{aligned}
& =e^{\int \frac{2}{1+\tan y} d y}=e^{\int \frac{2 \cos \cdot y}{\sin y+\cos y} d y} \\
& =e^{\int \frac{\sin y+\cos y-\sin y+\cos y}{(\sin y+\cos y)} d y}=e^{\int\left(1+\frac{\cos y-\sin y}{\sin y+\cos y}\right) d y} \\
& =e^{\int 1 \cdot d y} \cdot e^{\int \frac{\cos y-\sin y}{\sin y+\cos y} d y} \\
& =e^{y} \cdot e^{\log (\sin y+\cos y)}=e^{y} \cdot(\sin y+\cos y)
\end{aligned}
$$

So, the solution is $x \times$ I.F. $=\int Q \times$ I.F. $d y+c$
$\Rightarrow x \cdot e^{y}(\sin y+\cos y)=\int 1 \cdot e^{y}(\sin y+\cos y) d y+c$
$\Rightarrow \quad x \cdot e^{y}(\sin y+\cos y)=e^{y} . \sin y+c$

$$
\left[\because \int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+c\right]
$$

$\Rightarrow \quad x(\sin y+\cos y)=\sin y+c \cdot e^{-y}$
Hence, the required solution is $x(\sin y+\cos y)=\sin y+c . e^{-y}$.
Q27. Solve $: \frac{d y}{d x}=\cos (x+y)+\sin (x+y)$. [Hint: Substitute $x+y=z$]
Sol. Given that: $\frac{d y}{d x}=\cos (x+y)+\sin (x+y)$
Put $\quad x+y=v$, on differentiating w.r.t. x, we get,

$$
\begin{aligned}
& 1+\frac{d y}{d x}=\frac{d v}{d x} \\
& \therefore \quad \frac{d y}{d x}=\frac{d v}{d x}-1 \\
& \therefore \quad \frac{d v}{d x}-1=\cos v+\sin v \\
& \Rightarrow \quad \frac{d v}{d x}=\cos v+\sin v+1 \\
& \Rightarrow \frac{d v}{\cos v+\sin v+1}=d x
\end{aligned}
$$

Integrating both sides, we have

$$
\begin{array}{ll}
\Rightarrow & \int \frac{d v}{\cos v+\sin v+1}
\end{array}=\int 1 \cdot d x
$$

$$
\begin{aligned}
& 2 \cdot \frac{1}{2} \sec ^{2} \frac{v}{2} d v=d t \Rightarrow \sec ^{2} \frac{v}{2} d v=d t \\
& \Rightarrow \quad \int \frac{d t}{t}=\int 1 . d x \\
& \Rightarrow \quad \log |t|=x+c \\
& \Rightarrow \quad \log \left|2+2 \tan \frac{v}{2}\right|=x+c \\
& \Rightarrow \log \left|2+2 \tan \left(\frac{x+y}{2}\right)\right|=x+c \Rightarrow \log 2\left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c \\
& \Rightarrow \quad \log 2+\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c \\
& \Rightarrow \quad \log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+c-\log 2
\end{aligned}
$$

Hence, the required solution is

$$
\log \left[1+\tan \left(\frac{x+y}{2}\right)\right]=x+K \quad[c-\log 2=\text { K }]
$$

Q28. Find the general solution of $\frac{d y}{d x}-3 y=\sin 2 x$.
Sol. Given equation is $\frac{d y}{d x}-3 y=\sin 2 x$.
Here, $\mathrm{P}=-3$ and $\mathrm{Q}=\sin 2 x$
\therefore Integrating factor I.F. $=e^{\int P d x}=e^{\int-3 d x}=e^{-3 x}$
\therefore Solution is

$$
\begin{array}{lc}
& y \times \text { I.F. }=\int Q \cdot \text { I.F. } d x+c \\
\Rightarrow & y \cdot e^{-3 x}=\int \sin 2 x \cdot e^{-3 x} d x+c \\
\text { Let } & \mathrm{I}=\int \sin _{\mathrm{I}} 2 x \cdot e_{\mathrm{II}}^{-3 x} d x \\
\Rightarrow & \mathrm{I}=\sin 2 x \cdot \int e^{-3 x} d x-\int\left(D(\sin 2 x) \cdot \int e^{-3 x} d x\right) d x \\
\Rightarrow & \mathrm{I}=\sin 2 x \cdot \frac{e^{-3 x}}{-3}-\int 2 \cos 2 x \cdot \frac{e^{-3 x}}{-3} d x \\
\Rightarrow & \mathrm{I}=\frac{e^{-3 x}}{-3} \sin 2 x+\frac{2}{3} \int \cos _{\mathrm{I}} 2 x \cdot e_{\mathrm{II}}^{-3 x} d x \\
\Rightarrow & \mathrm{I}=\frac{e^{-3 x}}{-3} \sin 2 x+\frac{2}{3}\left[\cos 2 x \cdot \int e^{-3 x} d x-\right. \\
& \left.\quad \int\left[D \cos 2 x \cdot \int e^{-3 x} d x\right] d x\right]
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow \quad \mathrm{I}=\frac{e^{-3 x}}{-3} \sin 2 x+\frac{2}{3}\left[\cos 2 x \cdot \frac{e^{-3 x}}{-3}-\right. \\
&\left.\Rightarrow \quad 2 \sin 2 x \cdot \frac{e^{-3 x}}{-3}\right] d x \\
& \Rightarrow \quad \mathrm{I}=\frac{e^{-3 x}}{-3} \sin 2 x-\frac{2}{9} \cos 2 x \cdot e^{-3 x}-\frac{4}{9} \int \sin 2 x \cdot e^{-3 x} d x \\
&=\frac{e^{-3 x}}{-3} \sin 2 x-\frac{2}{9} e^{-3 x} \cos 2 x-\frac{4}{9} I \\
& \Rightarrow \quad I+\frac{4}{9} I=\frac{e^{-3 x}}{-3} \sin 2 x-\frac{2}{9} e^{-3 x} \cos 2 x \\
& \Rightarrow \quad \frac{13 I}{9}=-\frac{1}{9}\left[3 e^{-3 x} \sin 2 x+2 e^{-3 x} \cos 2 x\right] \\
& \Rightarrow \quad \mathrm{I}=-\frac{1}{13} e^{-3 x}[3 \sin 2 x+2 \cos 2 x]
\end{aligned}
$$

\therefore The equation becomes

$$
\begin{aligned}
y \cdot e^{-3 x} & =-\frac{1}{13} e^{-3 x}[3 \sin 2 x+2 \cos 2 x]+c \\
\therefore \quad y & =-\frac{1}{13}[3 \sin 2 x+2 \cos 2 x]+c \cdot e^{3 x}
\end{aligned}
$$

Hence, the required solution is

$$
y=-\left[\frac{3 \sin 2 x+2 \cos 2 x}{13}\right]+c \cdot e^{3 x}
$$

Q29. Find the equation of a curve passing through $(2,1)$ if the slope
of the tangent to the curve at any point (x, y) is $\frac{x^{2}+y^{2}}{2 x y}$.
Sol. Given that the slope of tangent to a curve at (x, y) is

$$
\frac{d y}{d x}=\frac{x^{2}+y^{2}}{2 x y}
$$

It is a homogeneous differential equation
So, put $y=v x \Rightarrow \frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$

$$
v+x \cdot \frac{d v}{d x}=\frac{x^{2}+v^{2} x^{2}}{2 x \cdot v x}
$$

$$
\begin{aligned}
& \Rightarrow \quad v+x \cdot \frac{d v}{d x}=\frac{1+v^{2}}{2 v} \\
& \Rightarrow \quad x \cdot \frac{d v}{d x}=\frac{1+v^{2}}{2 v}-v \quad \Rightarrow x \cdot \frac{d v}{d x}=\frac{1+v^{2}-2 v^{2}}{2 v} \\
& \Rightarrow \quad x \cdot \frac{d v}{d x}=\frac{1-v^{2}}{2 v} \Rightarrow \frac{2 v}{1-v^{2}} d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{2 v}{1-v^{2}} d v=\int \frac{d x}{x} \Rightarrow-\log \left|1-v^{2}\right|=\log x+\log c \\
\Rightarrow & -\log \left|1-\frac{y^{2}}{x^{2}}\right|=\log x+\log c \Rightarrow-\log \left|\frac{x^{2}-y^{2}}{x^{2}}\right|=\log x+\log c \\
\Rightarrow & \log \left|\frac{x^{2}}{x^{2}-y^{2}}\right|=\log |x c| \Rightarrow \frac{x^{2}}{x^{2}-y^{2}}=x c
\end{aligned}
$$

Since, the curve is passing through the point $(2,1)$

$$
\therefore \quad \frac{(2)^{2}}{(2)^{2}-(1)^{2}}=2 c \Rightarrow \frac{4}{3}=2 c \Rightarrow c=\frac{2}{3}
$$

Hence, the required equation is

$$
\frac{x^{2}}{x^{2}-y^{2}}=\frac{2}{3} x \Rightarrow 2\left(x^{2}-y^{2}\right)=3 x
$$

Q30. Find the equation of the curve through the point $(1,0)$ if the slope of the tangent to the curve at any point (x, y) is $\frac{y-1}{x^{2}+x}$.
Sol. Given that the slope of the tangent to the curve at (x, y) is

$$
\frac{d y}{d x}=\frac{y-1}{x^{2}+x} \Rightarrow \frac{d y}{y-1}=\frac{d x}{x^{2}+x}
$$

Integrating both sides, we have

$$
\begin{aligned}
& \int \frac{d y}{y-1}
\end{aligned}=\int \frac{d x}{x^{2}+x}, ~ \int \frac{d y}{y-1}=\int \frac{d x}{x^{2}+x+\frac{1}{4}-\frac{1}{4}} \text { [making perfect square] }
$$

$$
\begin{array}{ll}
\Rightarrow & \log |y-1|=\frac{1}{2 \times \frac{1}{2}} \log \left|\frac{x+\frac{1}{2}-\frac{1}{2}}{x+\frac{1}{2}+\frac{1}{2}}\right|+\log c \\
\Rightarrow & \log |y-1|=\log \left|\frac{x}{x+1}\right|+\log c \\
\Rightarrow & \log |y-1|=\log \left|c\left(\frac{x}{x+1}\right)\right| \\
\therefore & y-1=\frac{c x}{x+1} \Rightarrow(y-1)(x+1)=c x
\end{array}
$$

Since, the line is passing through the point $(1,0)$, then $(0-1)(1+1)=c(1) \Rightarrow c=2$.
Hence, the required solution is $(y-1)(x+1)=2 x$.
Q31. Find the equation of a curve passing through origin if the slope of the tangent to the curve at any point (x, y) is equal to the square of the difference of the abscissa and ordinate of the point.
Sol. Here, slope of the tangent of the curve $=\frac{d y}{d x}$ and the difference between the abscissa and ordinate $=x-y$.
\therefore As per the condition, $\frac{d y}{d x}=(x-y)^{2}$ Put $x-y=v$

$$
\begin{aligned}
\therefore & 1-\frac{d y}{d x} & =\frac{d v}{d x} \\
\therefore & \frac{d y}{d x} & =1-\frac{d v}{d x}
\end{aligned}
$$

\therefore the equation becomes

$$
1-\frac{d v}{d x}=v^{2} \Rightarrow \frac{d v}{d x}=1-v^{2} \Rightarrow \frac{d v}{1-v^{2}}=d x
$$

Integrating both sides, we get

$$
\begin{align*}
\int \frac{d v}{1-v^{2}} & =\int d x \\
\Rightarrow \quad \frac{1}{2} \log \left|\frac{1+v}{1-v}\right| & =x+c \Rightarrow \frac{1}{2} \log \left|\frac{1+x-y}{1-x+y}\right|=x+c \tag{1}
\end{align*}
$$

Since, the curve is passing through $(0,0)$
then $\frac{1}{2} \log \left|\frac{1+0-0}{1-0+0}\right|=0+c \Rightarrow c=0$
\therefore On putting $c=0$ in eq. (1) we get

$$
\begin{array}{rlrl}
& & \frac{1}{2} \log \left|\frac{1+x-y}{1-x+y}\right| & =x \Rightarrow \log \left|\frac{1+x-y}{1-x+y}\right|=2 x \\
\therefore & \frac{1+x-y}{1-x+y} & =e^{2 x} \\
\Rightarrow & (1+x-y) & =e^{2 x}(1-x+y)
\end{array}
$$

Hence, the required equation is $(1+x-y)=e^{2 x}(1-x+y)$.
Q32. Find the equation of a curve passing through the point $(1,1)$, if the tangent drawn at any point $\mathrm{P}(x, y)$ on the curve meets the coordinate axes at A and B such that P is the mid point of AB .
Sol. Let $\mathrm{P}(x, y)$ be any point on the curve and $A B$ be the tangent to the given curve at P.
P is the mid point of AB (given)
\therefore Coordinates of A and B are
$(2 x, 0)$ and $(0,2 y)$ respectively.
\therefore Slope of the tangent

$$
\mathrm{AB}=
$$

$\frac{2 y-0}{0-2 x}=-\frac{y}{x}$

$$
\therefore \quad \frac{d y}{d x}=-\frac{y}{x} \Rightarrow \frac{d y}{y}=-\frac{d x}{x}
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
& & \int \frac{d y}{y} & =-\int \frac{d x}{x} \Rightarrow \log y=-\log x+\log c \\
\Rightarrow & \log y+\log x & =\log c \Rightarrow \log y x=\log c \\
\therefore \quad y x & =c
\end{array}
$$

Since, the curve passes through $(1,1)$

$$
\begin{array}{rrrl}
\therefore & 1 \times 1 & =c \quad \therefore \quad c=1 \\
\Rightarrow & y x & =1 &
\end{array}
$$

Hence, the required equation is $x y=1$.
Q33. Solve: $x \frac{d y}{d x}=y(\log y-\log x+1)$
Sol. Given that: $x \frac{d y}{d x}=y(\log y-\log x+1)$

$$
\Rightarrow x \frac{d y}{d x}=y\left[\log \left(\frac{y}{x}\right)+1\right] \Rightarrow \frac{d y}{d x}=\frac{y}{x}\left[\log \left(\frac{y}{x}\right)+1\right]
$$

Since, it is a homogeneous differential equation.
\therefore Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \cdot \frac{d v}{d x}$
$\therefore \quad v+x \cdot \frac{d v}{d x}=\frac{v x}{x}\left[\log \left(\frac{v x}{x}\right)+1\right]$
$\Rightarrow \quad v+x \cdot \frac{d v}{d x}=v[\log v+1]$
$\Rightarrow \quad x \cdot \frac{d v}{d x}=v[\log v+1]-v \Rightarrow x \cdot \frac{d v}{d x}=v[\log v+1-1]$
$\Rightarrow \quad x \cdot \frac{d v}{d x}=v \cdot \log v \Rightarrow \frac{d v}{v \log v}=\frac{d x}{x}$
Integrating both sides, we get

$$
\int \frac{d v}{v \log v}=\int \frac{d x}{x}
$$

$$
\text { Put } \log v=t \text { on L.H.S. }
$$

$$
\frac{1}{v} d v=\mathrm{dt}
$$

$\therefore \quad \int \frac{d t}{t}=\int \frac{d x}{x}$
$\log |t|=\log |x|+\log c$
$\Rightarrow \quad \log |\log v|=\log x c \quad \Rightarrow \log v=x c$
$\Rightarrow \quad \log \left(\frac{y}{x}\right)=x c$
Hence, the required solution is $\log \left(\frac{y}{x}\right)=x c$.

OBJECTIVE TYPE QUESTIONS

Choose the correct answer from the given four options in each of the Exercises from 34 to 75 (M.C.Q.)

Q34. The degree of the differential equation

$$
\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d y}{d x}\right) \text { is }
$$

(a) 1
(b) 2
(c) 3
(d) not defined

Sol. The degree of the given differential equation is not defined because the value of $\sin \left(\frac{d y}{d x}\right)$ on expansion will be in increasing power of $\left(\frac{d y}{d x}\right)$.
Hence, the correct option is (d).
The degree of the differential equation $\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=\frac{d^{2} y}{d x^{2}}$ is
(a) 4
(b) $\frac{3}{2}$
(c) not defined (d) 2

Sol. The given differential equation is

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=\left(\frac{d^{2} y}{d x^{2}}\right)
$$

Squaring both sides, we have

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}=\left(\frac{d^{2} y}{d x^{2}}\right)^{2}
$$

So, the degree of the given differential equation is 2 .
Hence, the correct option is (d).
Q36. The order and degree of the differential equation
$\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}}+x^{\frac{1}{5}}=0$ respectively are
(a) 2 and not defined
(b) 2 and 2
(c) 2 and 3
(d) 3 and 3

Sol. Given differential equation is

$$
\begin{aligned}
\quad \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}}+x^{\frac{1}{5}} & =0 \\
\Rightarrow \quad \quad \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{4}} & =-x^{\frac{1}{5}}
\end{aligned}
$$

Since the degree of $\frac{d y}{d x}$ is in fraction.
So, the degree of the differential equation is not defined as the order is 2.
Hence, the correct option is (a).
Q37. If $y=e^{-x}(\mathrm{~A} \cos x+\mathrm{B} \sin x)$, then y is a solution of
(a) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=0$
(b) $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0$
(c) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0$
(d) $\frac{d^{2} y}{d x^{2}}+2 y=0$

Sol. Given equation is $y=e^{-x}(\mathrm{~A} \cos x+\mathrm{B} \sin x)$
Differentiating both sides, w.r.t. x, we get

$$
\begin{aligned}
& \frac{d y}{d x}=e^{-x}(-\mathrm{A} \sin x+\mathrm{B} \cos x)-e^{-x}(\mathrm{~A} \cos x+\mathrm{B} \sin x) \\
& \frac{d y}{d x}=e^{-x}(-\mathrm{A} \sin x+\mathrm{B} \cos x)-y
\end{aligned}
$$

Again differentiating w.r.t. x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=e^{-x}(-\mathrm{A} \cos x-\mathrm{B} \sin x)-e^{-x}(-\mathrm{A} \sin x+\mathrm{B} \cos x)-\frac{d y}{d x} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}=-e^{-x}(\mathrm{~A} \cos x+\mathrm{B} \sin x)-\left[\frac{d y}{d x}+y\right]-\frac{d y}{d x} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}=-y-\frac{d y}{d x}-y-\frac{d y}{d x} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}=-2 \frac{d y}{d x}-2 y \Rightarrow \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0
\end{aligned}
$$

Hence, the correct option is (c)
Q38. The differential equation for $y=\mathrm{A} \cos \alpha x+\mathrm{B} \sin \alpha x$, where A and B are arbitrary constants is:
(a) $\frac{d^{2} y}{d x^{2}}-\alpha^{2} y=0$
(b) $\frac{d^{2} y}{d x^{2}}+\alpha^{2} y=0$
(c) $\frac{d^{2} y}{d x^{2}}+\alpha y=0$
(d) $\frac{d^{2} y}{d x^{2}}-\alpha y=0$

Sol. Given equation is: $y=\mathrm{A} \cos \alpha x+\mathrm{B} \sin \alpha x$ Differentiating both sides w.r.t. x, we have

$$
\begin{aligned}
\frac{d y}{d x} & =-\mathrm{A} \sin \alpha x \cdot \alpha+\mathrm{B} \cos \alpha x \cdot \alpha \\
& =-\mathrm{A} \alpha \sin \alpha x+\mathrm{B} \alpha \cos \alpha x
\end{aligned}
$$

Again differentiating w.r.t. x, we get

$$
\begin{array}{rlrl}
& & \frac{d^{2} y}{d x^{2}} & =-\mathrm{A} \alpha^{2} \cos \alpha x-\mathrm{B} \alpha^{2} \sin \alpha x \\
\Rightarrow & \frac{d^{2} y}{d x^{2}} & =-\alpha^{2}(\mathrm{~A} \cos \alpha x+\mathrm{B} \sin \alpha x) \\
\Rightarrow & \frac{d^{2} y}{d x^{2}} & =-\alpha^{2} y \Rightarrow \frac{d^{2} y}{d x^{2}}+\alpha^{2} y=0
\end{array}
$$

Hence, the correct option is (b).
Q39. Solution of differential equation $x d y-y d x=0$ represents:
(a) a rectangular hyperbola
(b) parabola whose vertex is at origin
(c) straight line passing through origin
(d) a circle whose centre is at origin.

Sol. The given differential equation is

$$
x d y-y d x=0
$$

Sol. The given differential equation is

$$
\begin{aligned}
x d y-y d x & =0 \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{y}{x} \Rightarrow \frac{d y}{y}=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \qquad \int \frac{d y}{y}=\int \frac{d x}{x} \\
& \Rightarrow \quad \log y=\log x+\log c \Rightarrow \log y=\log x c \\
& \Rightarrow \quad y \\
& \text { through the origin. } \\
& \text { Hence, the correct answer is (c). }
\end{aligned}
$$

Q40. Integrating factor of the differential equation

$$
\cos x \cdot \frac{d y}{d x}+y \sin x=1 \text { is }
$$

(a) $\cos x$
(b) $\tan x$
(c) $\sec x$
(d) $\sin x$

Sol. The given differential equation is

$$
\begin{aligned}
\cos x \cdot \frac{d y}{d x}+y \sin x & =1 \\
\Rightarrow \quad & \frac{d y}{d x}+\frac{\sin x}{\cos x} y
\end{aligned}=\frac{1}{\cos x} \quad \Rightarrow \frac{d y}{d x}+\tan x y=\sec x .
$$

Here, $\mathrm{P}=\tan x$ and $\mathrm{Q}=\sec x$
\therefore Integrating factor $=e^{\int P d x}=e^{\int \tan x d x}=e^{\log \sec x}=\sec x$
Hence, the correct option is (c).
Q41. Solution of differential equation
$\tan y \sec ^{2} x d x+\tan x \sec ^{2} y d y=0$ is
(a) $\tan x+\tan y=k$
(b) $\tan x-\tan y=k$
(c) $\frac{\tan x}{\tan y}=k$
(d) $\tan x \cdot \tan y=k$

Sol. The given differential equation is

$$
\begin{aligned}
& \tan y \sec ^{2} x d x+\tan x \sec ^{2} y d y=0 \\
& \Rightarrow \tan x \sec ^{2} y d y=-\tan y \sec ^{2} x d x \\
& \Rightarrow \quad \frac{\sec ^{2} y}{\tan y} \cdot d y=\frac{-\sec ^{2} x}{\tan x} \cdot d x
\end{aligned}
$$

Integrating both sides, we get
$\Rightarrow \quad \int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{-\sec ^{2} x}{\tan x} d x$
$\Rightarrow \quad \log |\tan y|=-\log |\tan x|+\log c$
$\Rightarrow \quad \log |\tan y|+\log |\tan x|=\log c$

Q42. Family $y=A x+A^{3}$ of curves is represented by the differential equation of degree
(a) 1
(b) 2
(c) 3
(d) 4

Sol. Given equation is $y=A x+A^{3}$
Differentiating both sides, we get

$$
\frac{d y}{d x}=\text { A which has degree } 1
$$

Hence, the correct answer is (a).
Q43. Integrating factor of $x \frac{d y}{d x}-y=x-x$ is
(a) x
(c) $\frac{1}{x}$
(b) $\log x$
(d) $-x$

Sol. The given differential equation is

$$
x \frac{d y}{d x}-y=x^{4}-3 x \Rightarrow \frac{d y}{d x}-\frac{y}{x}=x^{3}-3
$$

Here, $\mathrm{P}=-\frac{1}{x}$ and $\mathrm{Q}=x^{3}-3$
So, integrating factor $=e^{\int P d x}=e^{\int-\frac{1}{x} d x}=e^{-\log x}=e^{\log \frac{1}{x}}=\frac{1}{x}$
Hence, the correct option is (c).
Q44. Solution of $\frac{d y}{d x}-y=1, y(0)=1$ is given by
(a) $x y=-e^{x}$
(b) $x y=-e^{-x}$
(c) $x y=-1$
(d) $y=2 e^{x}-1$

Sol. The given differential equation is

$$
\frac{d y}{d x}-y=1
$$

Here, $P=-1, Q=1$
\therefore Integrating factor, I.F. $=e^{\int P d x}=e^{\int-1 d x}=e^{-x}$
So, the solution is

$$
\begin{array}{ll}
& \\
& y \times \text { I.F. }
\end{array}=\int \text { Q. I.F. } d x+c
$$

So the equation is $y . e^{-x}=-e^{-x}+2$
$\Rightarrow \quad y=-1+2 e^{x}=2 e^{x}-1$
Hence, the correct option is (d).
Q45. The number of solutions of $\frac{d y}{d x}=\frac{y+1}{x-1}$ when $y(1)=2$ is
(a) none
(b) one
(c) two
(d) infinite

Sol. The given differential equation is $\frac{d y}{d x}=\frac{y+1}{x-1}$

$$
\Rightarrow \quad \frac{d y}{y+1}=\frac{d x}{x-1}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \quad \int \frac{d y}{y+1}=\int \frac{d x}{x-1} \\
& \Rightarrow \quad \log (y+1)=\log (x-1)+\log c \\
& \Rightarrow \quad \log (y+1)-\log (x-1)=\log c \\
& \Rightarrow \quad \log \left|\frac{y+1}{x-1}\right|=\log c \Rightarrow \frac{y+1}{x-1}=c \\
& \text { Put } x=1 \text { and } y=2
\end{aligned}
$$

$$
\Rightarrow \quad \frac{2+1}{1-1}=c \quad \therefore c=\infty
$$

$$
\therefore \quad \frac{y+1}{x-1}=\frac{1}{0} \Rightarrow x-1=0 \Rightarrow x=1
$$

Hence, the correct option is (b).
Q46. Which of the following is a second order differential equation?
(a) $\left(y^{\prime}\right)^{2}+x=y^{2}$
(b) $y^{\prime} y^{\prime \prime}+y=\sin x$
(c) $y^{\prime \prime}+\left(y^{\prime \prime}\right)^{2}+y=0$
(d) $y^{\prime}=y^{2}$

Sol. Second order differential equation is $y^{\prime} y^{\prime \prime}+y=\sin x$ Hence, the correct option is (b).
Q47. Integrating factor of the differential equation

$$
\left(1-x^{2}\right) \frac{d y}{d x}-x y=1 \text { is }
$$

(a) $-x$
(b) $\frac{x}{1+x^{2}}$
(c) $\sqrt{1-x^{2}}$
(d) $\frac{1}{2} \log \left(1-x^{2}\right)$

Sol. The given differential equation is

$$
\begin{aligned}
&\left(1-x^{2}\right) \frac{d y}{d x}-x y \\
&=1 \\
& \Rightarrow \quad \frac{d y}{d x}-\frac{x}{1-x^{2}} \cdot y=\frac{1}{1-x^{2}}
\end{aligned}
$$

Here, $\mathrm{P}=-\frac{x}{1-x^{2}}$ and $\mathrm{Q}=\frac{1}{1-x^{2}}$
\therefore Integrating factor

$$
\text { I.F. }=e^{\int P d x}=e^{\int \frac{-x}{1-x^{2}} d x}=e^{\frac{1}{2} \log \left(1-x^{2}\right)}=\sqrt{1-x^{2}}
$$

Hence, the correct option is (c).
Q48. $\tan ^{-1} x+\tan ^{-1} y=c$ is the general solution of the differential equation:
(a) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$
(b) $\frac{d y}{d x}=\frac{1+x^{2}}{1+y^{2}}$
(c) $\left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x=0$
(d) $\left(1+x^{2}\right) d x+\left(1+y^{2}\right) d y=0$

Sol. Given equation is $\tan ^{-1} x+\tan ^{-1} y=c$
Differentiating w.r.t. x, we have

$$
\begin{aligned}
& \frac{1}{1+x^{2}}+\frac{1}{1+y^{2}} \cdot \frac{d y}{d x} & =0 \\
\Rightarrow & \left(\frac{1}{1+y^{2}}\right) \frac{d y}{d x}=-\left(\frac{1}{1+x^{2}}\right) & \Rightarrow \frac{d y}{d x}=-\left(\frac{1+y^{2}}{1+x^{2}}\right) \\
\Rightarrow & \left(1+x^{2}\right) d y & =-\left(1+y^{2}\right) d x \\
\Rightarrow & \left(1+x^{2}\right) d y+\left(1+y^{2}\right) d x & =0
\end{aligned}
$$

Hence the correct option is (c).
Q49. The differential equation $y \frac{d y}{d x}+x=c$ represents:
(a) Family of hyperbolas
(b) Family of parabolas
(c) Family of ellipses
(d) Family of circles

Sol. Given differential equation is

$$
\begin{aligned}
y \frac{d y}{d x}+x & =c \\
\Rightarrow \quad y \frac{d y}{d x} & =c-x \quad \Rightarrow y d y=(c-x) d x
\end{aligned}
$$

\therefore Integrating both sides, we get

$$
\begin{aligned}
\int y d y & =\int(c-x) d x \\
\Rightarrow \quad \frac{y^{2}}{2} & =c x-\frac{x^{2}}{2}+k \Rightarrow \frac{x^{2}}{2}+\frac{y^{2}}{2}-c x=k
\end{aligned}
$$

$\Rightarrow \quad x^{2}+y^{2}-2 c x=2 k$ which is a family of circles.
Hence, the correct option is (d).
Q50. The general solution of $e^{x} \cos y d x-e^{x} \sin y d y=0$ is:
(a) $e^{x} \cos y=k$
(b) $e^{x} \sin y=k$
(c) $e^{x}=k \cos y$
(d) $e^{x}=k \sin y$

Sol. The given differential equation is

$$
\begin{aligned}
& e^{x} \cos y d x-e^{x} \sin y d y
\end{aligned}=0 . \quad \quad \quad\left[\because e^{x} \neq 0\right]
$$

Integrating both sides, we have

$$
\begin{array}{rlrl}
\int \frac{\sin y}{\cos y} d y & =\int d x \\
\Rightarrow \quad-\log |\cos y| & =x+\log k \Rightarrow \log \frac{1}{\cos y}-\log k=x \\
\Rightarrow \quad \log \left(\frac{1}{k \cos y}\right) & =x \Rightarrow \frac{1}{k \cos y}=e^{x} \\
\Rightarrow \quad & & \frac{1}{k} & =e^{x} \cos y \quad \Rightarrow e^{x} \cos y=c \quad\left[c=\frac{1}{k}\right]
\end{array}
$$

Hence, the correct option is (a).
Q51. The degree of the differential equation:

$$
\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{3}+6 y^{5}=0 \text { is }
$$

(a) 1
(b) 2
(c) 3
(d) 5

Sol. The degree of the given differential equation is 1 as the power of the highest order is 1 .
Hence, the correct option is (a).
Q52. The solution of the differential equation

$$
\frac{d y}{d x}+y=e^{-x}, y(0)=0 \text { is }
$$

(a) $y=e^{x}(x-1)$
(b) $y=x e^{-x}$
(c) $y=x e^{-x}+1$
(d) $y=(x+1) e^{-x}$

Sol. The given differential equation is

$$
\frac{d y}{d x}+y=e^{-x}
$$

Since, it is a linear differential equation
$\therefore \mathrm{P}=1$ and $\mathrm{Q}=e^{-x}$
\therefore I.F $=e^{\int 1 . d x}=e^{x}$
So, the solution is

$$
\begin{aligned}
& \quad y \times \text { I.F. }=\int Q \cdot \text { I.F. } d x+c \Rightarrow y \cdot e^{x}=\int e^{-x} \cdot e^{x} d x+c \\
& \Rightarrow \quad y \cdot e^{x}=\int 1 \cdot d x+c \Rightarrow y \cdot e^{x}=x+c \\
& \text { Put } x=0, y=0 \text {, we have } 0=0+c \quad \therefore c=0
\end{aligned}
$$

So, the solution is $y e^{x}=x \Rightarrow y=x \cdot e^{-x}$
Hence, the correct option is (b).
Q53. Integrating factor of the differential equation

$$
\frac{d y}{d x}+y \tan x-\sec x=0 \text { is }
$$

(a) $\cos x$
(b) $\sec x$
(c) $e^{\cos x}$
(d) $e^{\sec x}$

Sol. Given differential equation is

$$
\frac{d y}{d x}+y \tan x-\sec x=0 \Rightarrow \frac{d y}{d x}+y \tan x=\sec x
$$

Here, $\mathrm{P}=\tan x$ and $\mathrm{Q}=\sec x$
\therefore I.F. $=e^{\int P d x}=e^{\int \tan x d x}=e^{\log \sec x}=\sec x$
Hence, the correct option is (b).
Q54. The solution of the differential equation

$$
\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}} \text { is }
$$

(a) $y=\tan ^{-1} x$
(b) $y-x=k(1+x y)$
(c) $x=\tan ^{-1} y$
(d) $\tan (x y)=k$

Sol. The given differential equation is

$$
\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}} \Rightarrow \frac{d y}{1+y^{2}}=\frac{d x}{1+x^{2}}
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
& & \int \frac{d y}{1+y^{2}} & =\int \frac{d x}{1+x^{2}} \\
\Rightarrow & & \tan ^{-1} y & =\tan ^{-1} x+c \Rightarrow \tan ^{-1} y-\tan ^{-1} x=c \\
\Rightarrow & \tan ^{-1}\left(\frac{y-x}{1+x y}\right) & =c \\
\Rightarrow & \frac{y-x}{1+x y} & =\tan c \Rightarrow \frac{y-x}{1+x y}=k \quad[k=\tan c] \\
\Rightarrow & y-x & =k(1+x y)
\end{array}
$$

Hence, the correct option is (b).
Q55. The integrating factor of the differential equation

$$
\frac{d y}{d x}+y=\frac{1+y}{x} \text { is: }
$$

(a) $\frac{x}{e^{x}}$
(b) $\frac{e^{x}}{x}$
(c) $x \mathrm{e}^{x}$
(d) e^{x}

Sol. The given differential equation is

$$
\frac{d y}{d x}+y=\frac{1+y}{x}
$$

$$
\begin{array}{ll}
\Rightarrow & \frac{d y}{d x}=\frac{1+y}{x}-y \\
\Rightarrow & \frac{d y}{d x}=\frac{1}{x}+y \frac{(1-x)}{x} \Rightarrow \frac{d y}{d x}-\left(\frac{1-x}{x}\right) y=\frac{1}{x}
\end{array}
$$

Here, $\mathrm{P}=-\left(\frac{1-x}{x}\right)$ and $\mathrm{Q}=\frac{1}{x}$
\therefore Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{x-1}{x} d x}=e^{\int\left(1-\frac{1}{x}\right) d x}$

$$
\begin{aligned}
& =e^{(x-\log x)}=e^{x} \cdot e^{-\log x} \\
& =e^{x} \cdot e^{\log \frac{1}{x}}=e^{x} \cdot \frac{1}{x}
\end{aligned}
$$

Hence, the correct option is (b).
Q56. $y=a e^{m x}+b e^{-m x}$ satisfies which of the following differential equations?
(a) $\frac{d y}{d x}+m y=0$
(b) $\frac{d y}{d x}-m y=0$
(c) $\frac{d^{2} y}{d x^{2}}-m^{2} y=0$
(d) $\frac{d^{2} y}{d x^{2}}+m^{2} y=0$

Sol. The given equation is $y=a e^{m x}+b e^{-m x}$
On differentiation, we get $\frac{d y}{d x}=a \cdot m e^{m x}-b \cdot m e^{-m x}$
Again differentiating w.r.t., we have

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=a m^{2} e^{m x}+b m^{2} e^{-m x} \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=m^{2}\left(a e^{m x}+b e^{-m x}\right) \Rightarrow \frac{d^{2} y}{d x^{2}}=m^{2} y \Rightarrow \frac{d^{2} y}{d x^{2}}-m^{2} y=0
\end{aligned}
$$

Hence, the correct option is (c).
Q57. The solution of the differential equation
$\cos x \sin y d x+\sin x \cos y d y=0$ is
(a) $\frac{\sin x}{\sin y}=c$
(b) $\sin x \sin y=c$
(c) $\sin x+\sin y=c$
(d) $\cos x \cos y=c$

Sol. The given differential equation is
$\cos x \sin y d x+\sin x \cos y d y=0$
$\Rightarrow \quad \sin x \cos y d y=-\cos x \sin y d x$
$\Rightarrow \frac{\cos y}{\sin y} d y=-\frac{\cos x}{\sin x} d x \Rightarrow \cot y d y=-\cot x d x$
Integrating both sides, we have
$\Rightarrow \quad \int \cot y d y=-\int \cot x d x$

$$
\begin{array}{lrl}
\Rightarrow & \log |\sin y| & =-\log |\sin x|+\log c \\
\Rightarrow & \log |\sin y|+\log |\sin x| & =\log c \\
\Rightarrow & \log |\sin y \cdot \sin x| & =\log c \Rightarrow \sin x \sin y=c
\end{array}
$$

Hence, the correct option is (b).
Q58. The solution of $x \frac{d y}{d x}+y=e^{x}$ is:
(a) $y=\frac{e^{x}}{x}+\frac{k}{x}$
(b) $y=x e^{x}+c x$
(c) $y=x \cdot e^{x}+k$
(d) $x=\frac{e^{y}}{y}+\frac{k}{y}$

Sol. The given differential equation is $x \frac{d y}{d x}+y=e^{x}$

$$
\Rightarrow \quad \frac{d y}{d x}+\frac{y}{x}=\frac{e^{x}}{x}
$$

Here $\mathrm{P}=\frac{1}{x}$ and $\mathrm{Q}=\frac{e^{x}}{x}$
\therefore Integrating factor I.F. $=e^{\int \frac{1}{x} d x}=e^{\log |x|}=x$
So, the solution is

$$
\begin{array}{rlrl}
y \times \text { I.F. } & =\int Q \times \text { I.F. } d x+k \Rightarrow y \times x=\int \frac{e^{x}}{x} \times x d x+k \\
\Rightarrow & y \times x & =\int e^{x} d x+k \Rightarrow y \times x=e^{x}+k \\
\therefore & y & =\frac{e^{x}}{x}+\frac{k}{x}
\end{array}
$$

Hence, the correct option is (a).
Q59. The differential equation of the family of curves $x^{2}+y^{2}-2 a y=0$, where a is arbitrary constant, is:
(a) $\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y$
(b) $2\left(x^{2}+y^{2}\right) \frac{d y}{d x}=x y$
(c) $2\left(x^{2}-y^{2}\right) \frac{d y}{d x}=x y$
(d) $\left(x^{2}+y^{2}\right) \frac{d y}{d x}=2 x y$

Sol. The given equation is

$$
\begin{equation*}
x^{2}+y^{2}-2 a y=0 \tag{1}
\end{equation*}
$$

Differentiating w.r.t. x, we have

$$
\begin{aligned}
& 2 x+2 y \cdot \frac{d y}{d x}-2 a \frac{d y}{d x}=0 \\
& \Rightarrow \quad x+y \frac{d y}{d x}-a \frac{d y}{d x}=0 \quad \Rightarrow \quad x+(y-a) \frac{d y}{d x}=0 \\
& \Rightarrow \quad(y-a) \frac{d y}{d x}=-x \quad \Rightarrow y-a=\frac{-x}{d y / d x}
\end{aligned}
$$

$$
\Rightarrow \quad a=y+\frac{x}{d y / d x} \Rightarrow a=\frac{y \cdot \frac{d y}{d x}+x}{\frac{d y}{d x}}
$$

Putting the value of a in eq. (1) we get

$$
\begin{aligned}
x^{2}+y^{2}-2 y\left[\frac{y \frac{d y}{d x}+x}{\frac{d y}{d x}}\right] & =0 \\
\Rightarrow \quad\left(x^{2}+y^{2}\right) \frac{d y}{d x}-2 y\left(y \frac{d y}{d x}+x\right) & =0 \\
\Rightarrow \quad\left(x^{2}+y^{2}\right) \frac{d y}{d x}-2 y^{2} \frac{d y}{d x}-2 x y & =0 \\
\Rightarrow \quad\left(x^{2}+y^{2}-2 y^{2}\right) \frac{d y}{d x} & =2 x y \Rightarrow\left(x^{2}-y^{2}\right) \frac{d y}{d x}=2 x y
\end{aligned}
$$

\therefore Hence the correct option is (a).
Q60. Family $y=A x+A^{3}$ of curves will correspond to a differential equation of order
(a) 3
(b) 2
(c) 1
(d) not defined

Sol. The given equation is

$$
y=A x+A^{3}
$$

Differentiating both sides, we get $\frac{d y}{d x}=\mathrm{A}$
Again differentiating both sides, we have $\frac{d^{2} y}{d x^{2}}=0$
So the order of the differential equation is 2 .
Hence, the correct option is (b).
Q61. The general solution of $\frac{d y}{d x}=2 x e^{x^{2}-y}$ is :
(a) $e^{x^{2}-y}=c$
(b) $e^{-y}+e^{x^{2}}=c$
(c) $e^{y}=e^{x^{2}}+c$
(d) $e^{x^{2}+y}=c$

Sol. The given differential equation is

$$
\begin{aligned}
\frac{d y}{d x} & =2 x \cdot e^{x^{2}-y} \\
\Rightarrow \quad \frac{d y}{d x} & =2 x \cdot e^{x^{2}} \cdot e^{-y} \Rightarrow \frac{d y}{e^{-y}}=2 x \cdot e^{x^{2}} d x
\end{aligned}
$$

Integrating both sides, we have

$$
\int \frac{d y}{e^{-y}}=\int 2 x \cdot e^{x^{2}} d x \Rightarrow \int e^{y} d y=\int 2 x \cdot e^{x^{2}} d x
$$

Put in RHS $x^{2}=t \therefore 2 x d x=d t$

$$
\begin{aligned}
& \therefore \quad \int e^{y} d y=\int e^{t} d t \\
& \Rightarrow \quad e^{y}=e^{t}+c \Rightarrow e^{y}=e^{x^{2}}+c
\end{aligned}
$$

Hence, the correct option is (c).
Q62. The curve for which the slope of the tangent at any point is equal to the ratio of the abscissa to the ordinate of the point is:
(a) an ellipse
(b) parabola
(c) circle
(d) rectangular hyperbola

Sol. Since, the slope of the tangent to the curve $=x: y$

$$
\therefore \quad \frac{d y}{d x}=\frac{x}{y} \Rightarrow y d y=x d x
$$

Integrating both sides, we get $\int y d y=\int x d x$
$\Rightarrow \quad \frac{y^{2}}{2}=\frac{x^{2}}{2}+c \quad \Rightarrow y^{2}=x^{2}+2 c$
$\Rightarrow \quad y^{2}-x^{2}=2 c=k$ which is rectangular hyperbola.
Hence, the correct option is (d).
Q63. The general solution of the differential equation $\frac{d y}{d x}=e^{\frac{x^{2}}{2}}+x y$ is:
(a) $y=c \cdot e^{\frac{-x^{2}}{2}}$
(b) $y=c \cdot e^{\frac{x^{2}}{2}}$
(c) $y=(x+c) \cdot e^{\frac{x^{2}}{2}}$
(d) $y=(c-x) e^{\frac{x^{2}}{2}}$

Sol. The given differential equation is

$$
\frac{d y}{d x}=e^{\frac{x^{2}}{2}}+x y \Rightarrow \frac{d y}{d x}-x y=e^{\frac{x^{2}}{2}}
$$

Since it is linear differential equation where $P=-x$ and $Q=e^{\frac{x^{2}}{2}}$
\therefore Integrating factor I.F. $=e^{\int P d x}=e^{\int-x d x}=e^{-\frac{x^{2}}{2}}$
So, the solution is

$$
\begin{aligned}
& y \times \text { I.F. }=\int Q \times \text { I.F. } d x+c \\
& \Rightarrow \quad y \times e^{-\frac{x^{2}}{2}}=\int e^{\frac{x^{2}}{2}} e^{-\frac{x^{2}}{2}} d x+c \\
& \Rightarrow \quad y \times e^{-\frac{x^{2}}{2}}=\int e^{0} d x+c \\
& \Rightarrow \quad y \times e^{-\frac{x^{2}}{2}}=\int 1 . d x+c \Rightarrow y \times e^{-\frac{x^{2}}{2}}=x+c
\end{aligned}
$$

$$
\therefore \quad y=(x+c) e^{\frac{x^{2}}{2}}
$$

Hence the correct option is (c).
Q64. The solution of the equation $(2 y-1) d x-(2 x+3) d y=0$ is
(a) $\frac{2 x-1}{2 y+3}=k$
(b) $\frac{2 y+1}{2 x-3}=k$
(c) $\frac{2 x+3}{2 y-1}=k$
(d) $\frac{2 x-1}{2 y-1}=k$

Sol. The given differential equation is

$$
\begin{aligned}
(2 y-1) d x-(2 x+3) d y & =0 \Rightarrow(2 x+3) d y=(2 y-1) d x \\
\Rightarrow \quad \frac{d y}{2 y-1} & =\frac{d x}{2 x+3}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
& & \int \frac{d y}{2 y-1} & =\int \frac{d x}{2 x+3} \\
& & & \frac{1}{2} \log |2 y-1| \\
\Rightarrow & =\frac{1}{2} \log |2 x+3|+\log c \\
\Rightarrow & & \log |2 y-1| & =\log |2 x+3|+2 \log c \\
\Rightarrow & & \log \left|\frac{2 y-1}{2 x+3}\right| & =\log c^{2} \\
\Rightarrow & & \frac{2 y-1}{2 x+3} & =c^{2} \Rightarrow \frac{2 x+3}{2 y-1}=\frac{1}{c^{2}} \\
\Rightarrow & & \frac{2 x+3}{2 y-1} & =k, \text { where } k=\frac{1}{c^{2}}
\end{array}
$$

Hence, the correct option is (c).
Q65. The differential equation for which $y=a \cos x+b \sin x$ is a solution, is:
(a) $\frac{d^{2} y}{d x^{2}}+y=0$
(b) $\frac{d^{2} y}{d x^{2}}-y=0$
(c) $\frac{d^{2} y}{d x^{2}}+(a+b) y=0$
(d) $\frac{d^{2} y}{d x^{2}}+(a-b) y=0$

Sol. The given equation is

$$
\begin{aligned}
y & =a \cos x+b \sin x \\
\frac{d y}{d x} & =-a \sin x+b \cos x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =-a \cos x-b \sin x \\
\Rightarrow \quad \frac{d^{2} y}{d x^{2}} & =-(a \cos x+b \sin x) \Rightarrow \frac{d^{2} y}{d x^{2}}=-y \quad \Rightarrow \frac{d y}{d x}+y=0
\end{aligned}
$$

Hence, the correct option is (a).
Q66. The solution of $\frac{d y}{d x}+y=e^{-x}, y(0)=0$ is:
(a) $y=e^{-x}(x-1)$
(b) $y=x \cdot e^{x}$
(c) $y=x e^{-x}+1$
(d) $y=x \cdot e^{-x}$

Sol. The given differential equation is $\frac{d y}{d x}+y=e^{-x}$
Since, it is a linear differential equation then $\mathrm{P}=1$ and $\mathrm{Q}=e^{-x}$ Integrating factor I.F. $=e^{\int P d x}=e^{\int 1 . d x}=e^{x}$
\therefore Solution is

$$
\begin{aligned}
y \times \text { I.F. } & =\int Q \times \text { I.F. } d x+c \\
\Rightarrow y \times e^{x} & =\int e^{-x} \times e^{x} d x+c \Rightarrow y \times e^{x}=\int e^{0} d x+c \\
\Rightarrow y \times e^{x} & =\int 1 . d x+c \Rightarrow y \times e^{x}=x+c
\end{aligned}
$$

Put $y=0$ and $x=0$
$\therefore \quad 0=0+c \quad \therefore \quad c=0$
\therefore equation is
So

$$
y \times e^{x}=x
$$

Hence, the correct option is (d).
Q67. The order and degree of the differential equation

$$
\left[\frac{d^{3} y}{d x^{3}}\right]^{2}-3 \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{4}=y^{4} \text { are }
$$

(a) 1, 4
(b) 3, 4
(c) 2,4
(d) 3,2

Sol. The given differential equation is

$$
\left[\frac{d^{3} y}{d x^{3}}\right]^{2}-3 \frac{d^{2} y}{d x^{2}}+2\left(\frac{d y}{d x}\right)^{4}=y^{4}
$$

Here the highest derivative is $\frac{d^{3} y}{d x^{3}}$.
\therefore the order of the differential equation is 3
and since, the power of highest order is 2
\therefore its degree is 2
Hence, the correct option is (d).
Q68. The order and degree of the differential equation
$\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{d^{2} y}{d x^{2}}$ are:
(a) $2, \frac{3}{2}$
(b) 2, 3
(c) 2,1
(d) 3,4

Sol. The given differential equation is

$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]=\frac{d^{2} y}{d x^{2}}
$$

Here, the highest derivative is 2 ,
\therefore order $=2$
and the power of the highest derivative is 1
\therefore degree $=1$
Hence, the correct option is (c).
Q69. The differential equation of the family of curves $y^{2}=4 a(x+a)$ is:
(a) $y^{2}=4 \frac{d y}{d x}\left(x+\frac{d y}{d x}\right)$
(b) $2 y \cdot \frac{d y}{d x}=4 a$
(c) $y \cdot \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=0$
(d) $2 x \cdot \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}-y$

Sol. The given equation of family of curves is

$$
\Rightarrow \quad \begin{array}{ll}
& y^{2}=4 a(x+a) \\
& y^{2}=4 a x+4 a^{2} \tag{1}
\end{array}
$$

Differentiating both sides, w.r.t. x, we get

$$
\begin{aligned}
2 y \cdot \frac{d y}{d x} & =4 a \\
\Rightarrow \quad y \cdot \frac{d y}{d x} & =2 a \Rightarrow \frac{y}{2} \frac{d y}{d x}=a
\end{aligned}
$$

Now, putting the value of a in eq. (1) we get

$$
\begin{aligned}
y^{2} & =4 x\left(\frac{y}{2} \frac{d y}{d x}\right)+4\left(\frac{y}{2} \cdot \frac{d y}{d x}\right)^{2} \\
\Rightarrow \quad y^{2} & =2 x y \frac{d y}{d x}+y^{2}\left(\frac{d y}{d x}\right)^{2} \Rightarrow y=2 x \frac{d y}{d x}+y\left(\frac{d y}{d x}\right)^{2}
\end{aligned}
$$

$\Rightarrow \quad 2 x \cdot \frac{d y}{d x}+y \cdot\left(\frac{d y}{d x}\right)^{2}-y=0$
Hence, the correct option is (d).
Q70. Which of the following is the general solution of

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0 ?
$$

(a) $y=(A x+B) \cdot e^{x}$
(b) $y=(A x+B) e^{-x}$
(c) $y=A e^{x}+B e^{-x}$
(d) $y=A \cos x+B \sin x$

Sol. The given differential equation is

$$
\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=0
$$

Since the above equation is of second order and first degree
$\therefore \quad D^{2} y-2 D y+y=0$, where $D=\frac{d}{d x}$
$\Rightarrow \quad\left(D^{2}-2 D+1\right) y=0$
\therefore auxiliary equation is

$$
m^{2}-2 m+1=0 \quad \Rightarrow \quad(m-1)^{2}=0 \quad \Rightarrow \quad m=1,1
$$

If the roots of Auxiliary equation are real and equal say (m) then $C F=\left(c_{1} x+c_{2}\right) \cdot e^{m x}$
$\therefore \quad C F=(A x+B) e^{x}$
So $y=(A x+B) \cdot e^{x}$
Hence, the correct option is (a).
Q71. General solution of $\frac{d y}{d x}+y \tan x=\sec x$ is:
(a) $y \sec x=\tan x+c$
(b) $y \tan x=\sec x+c$
(c) $\tan x=y \tan x+c$
(d) $x \sec x=\tan y+c$

Sol. The given differential equation is $\frac{d y}{d x}+y \tan x=\sec x$
Since, it is a linear differential equation
$\therefore \quad \mathrm{P}=\tan x$ and $\mathrm{Q}=\sec x$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \tan x d x}=e^{\log \sec x}=\sec x$
\therefore Solution is

$$
\begin{aligned}
y \times \text { I.F. } & =\int Q \times \text { I.F. } d x+c \\
\Rightarrow \quad y \times \sec x & =\int \sec x \cdot \sec x d x+c \\
\Rightarrow \quad y \sec x & =\int \sec ^{2} x d x+c \Rightarrow y \sec x=\tan x+c
\end{aligned}
$$

Hence, the correct option is (a).

Q72. Solution of differential equation $\frac{d y}{d x}+\frac{y}{x}=\sin x$ is:
(a) $x(y+\cos x)=\sin x+c$
(b) $x(y-\cos x)=\sin x+c$
(c) $x y \cos x=\sin x+c$
(d) $x(y+\cos x)=\cos x+c$

Sol. The given differential equation is $\frac{d y}{d x}+\frac{y}{x}=\sin x$
Since, it is a linear differential equation
$\therefore \quad \mathrm{P}=\frac{1}{x}$ and $\mathrm{Q}=\sin x$
Integrating factor I.F. $=e^{\int \frac{1}{x} d x}=e^{\log x}=x$
\therefore Solution is $y \times$ I.F. $=\int Q \times$ I.F. $d x+c$

$$
\begin{array}{ll}
& y \times x=\int \sin x \cdot x d x+c \Rightarrow y \times x=\int x \sin x d x+c \\
\Rightarrow & y x=x \cdot \int \sin x d x-\int\left(D(x) \int \sin x d x\right) d x+c \\
\Rightarrow & y x=x(-\cos x)-\int-\cos x d x \\
\Rightarrow & y x=-x \cos x+\int \cos x d x \Rightarrow y x=-x \cos x+\sin x+c \\
\Rightarrow & y x+x \cos x=\sin x+c \\
\Rightarrow & x(y+\cos x)=\sin x+c
\end{array}
$$

Hence, the correct option is (a).
Q73. The general solution of the differential equation
$\left(e^{x}+1\right) y d y=(y+1) e^{x} d x$ is:
(a) $(y+1)=k\left(e^{x}+1\right)$
(b) $y+1=e^{x}+1+k$
(c) $y=\log \left[k(y+1)\left(e^{x}+1\right)\right]$
(d) $y=\log \left\{\frac{e^{x}+1}{y+1}\right\}+k$

Sol. The given differential equation is

$$
\begin{aligned}
\left(e^{x}+1\right) y d y & =(y+1) e^{x} d x \\
\Rightarrow \quad & \frac{y}{y+1} d y
\end{aligned}=\frac{e^{x}}{e^{x}+1} d x
$$

Integrating both sides, we get

$$
\begin{aligned}
\int \frac{y}{y+1} d y & =\int \frac{e^{x}}{e^{x}+1} d x \\
\Rightarrow \quad \int \frac{y+1-1}{y+1} d y & =\int \frac{e^{x}}{e^{x}+1} d x \\
\Rightarrow \quad \int 1 . d y-\int \frac{1}{y+1} d y & =\int \frac{e^{x}}{e^{x}+1} d x
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & y-\log |y+1| & =\log \left|e^{x}+1\right|+\log k \\
\Rightarrow & y & =\log |y+1|+\log \left|e^{x}+1\right|+\log k \\
\Rightarrow & y & =\log \left|k(y+1)\left(e^{x}+1\right)\right|
\end{aligned}
$$

Hence, the correct option is (c).
Q74. The solution of differential equation $\frac{d y}{d x}=e^{x-y}+x^{2} e^{-y}$ is:
(a) $y=e^{x-y}-x^{2} e^{-y}+c$
(b) $e^{y}-e^{x}=\frac{x^{3}}{3}+c$
(c) $e^{x}+e^{y}=\frac{x^{3}}{3}+c$
(d) $e^{x}-e^{y}=\frac{x^{3}}{3}+c$

Sol. The given differential equation is

$$
\begin{aligned}
\frac{d y}{d x} & =e^{x-y}+x^{2} e^{-y} \\
\Rightarrow \quad \frac{d y}{d x} & =e^{x} \cdot e^{-y}+x^{2} \cdot e^{-y} \Rightarrow \frac{d y}{d x}=e^{-y}\left(e^{x}+x^{2}\right) \\
\Rightarrow \quad \frac{d y}{e^{-y}} & =\left(e^{x}+x^{2}\right) d x \Rightarrow e^{y} \cdot d y=\left(e^{x}+x^{2}\right) d x
\end{aligned}
$$

Integrating both sides, we have

$$
\begin{aligned}
\int e^{y} d y & =\int\left(e^{x}+x^{2}\right) d x \\
\Rightarrow \quad e^{y} & =e^{x}+\frac{x^{3}}{3}+c \Rightarrow e^{y}-e^{x}=\frac{x^{3}}{3}+c
\end{aligned}
$$

Hence, the correct option is (b).
Q75. The solution of the differential equation

$$
\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{1}{\left(1+x^{2}\right)^{2}} \text { is: }
$$

(a) $y\left(1+x^{2}\right)=c+\tan ^{-1} x$
(b) $\frac{y}{1+x^{2}}=c+\tan ^{-1} x$
(c) $y \log \left(1+x^{2}\right)=c+\tan ^{-1} x$
(d) $y\left(1+x^{2}\right)=c+\sin ^{-1} x$

Sol. The given differential equation is

$$
\frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{1}{\left(1+x^{2}\right)^{2}}
$$

Since, it is a linear differential equation

$$
\mathrm{P}=\frac{2 x}{1+x^{2}} \text { and } \mathrm{Q}=\frac{1}{\left(1+x^{2}\right)^{2}}
$$

Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=\left(1+x^{2}\right)$
\therefore Solution is $y \times$ I.F. $=\int Q \times$ I.F. $d x+c$

$$
\begin{aligned}
& \Rightarrow \quad y\left(1+x^{2}\right)=\int \frac{1}{\left(1+x^{2}\right)^{2}} \times\left(1+x^{2}\right) d x+c \\
& \Rightarrow \quad y\left(1+x^{2}\right)=\int \frac{1}{\left(1+x^{2}\right)} d x+c \Rightarrow y\left(1+x^{2}\right)=\tan ^{-1} x+c
\end{aligned}
$$

Hence, the correct option is (a).
Q76. Fill in the blanks of the following (i to $x i$):
(i) The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+e^{d y / d x}=0$ is \qquad .
(ii) The degree of the differential equation $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x$
is
\qquad
(iii) The number of arbitrary constants in the general solution of a differential equation of order three is \qquad .
(iv) $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{1}{x}$ is an equation of the type \qquad .
(v) General solution of the differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1}$ is given by \qquad .
(vi) The solution of the differential equation $x \frac{d y}{d x}+2 y=x^{2}$ is
\qquad .
(vii) The solution of $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ is \qquad .
(viii) The solution of the differential equation $y d x+(x+x y) d y=0$ is \qquad .
(ix) General solution of $\frac{d y}{d x}+y=\sin x$ is \qquad .
(x) The solution of differential equation $\cot y d x=x d y$ is
\qquad .
(xi) The integrating factor of $\frac{d y}{d x}+y=\frac{1+y}{x}$ is \qquad .
Sol. (i) The degree of the differential equation $\frac{d^{2} y}{d x^{2}}+e^{d y / d x}=0$
is not defined.
(ii) The given differential equation is $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x$ Squaring both sides, we gett

$$
1+\left(\frac{d y}{d x}\right)^{2}=x^{2}
$$

So, the degree of the equation is 2 .
(iii) The number of arbitrary constants in the solution is 3 .
(iv) The given differential equation $\frac{d y}{d x}+\frac{y}{x \log x}=\frac{1}{x}$ is of the type $\frac{d y}{d x}+P y=Q$.
(v) General solution of the differential equation of the type
$\frac{d x}{d y}+P_{1} x=Q_{1}$ is given by $x \times$ I.F. $=\int Q \times$ I.F. $d y+c$
$\Rightarrow \quad x \cdot e^{\int P_{1} d y}=\int Q_{1} \cdot e^{\int P_{1} d y} d y+c$.
(vi) The given differential equation is $x \frac{d y}{d x}+2 y=x^{2}$
$\Rightarrow \quad \frac{d y}{d x}+\frac{2}{x} y=x$.
Since, it is linear differential equation
$\therefore \quad \mathrm{P}=\frac{2}{x}$ and $\mathrm{Q}=x$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2}{x} d x}=e^{2 \log x}=e^{\log x^{2}}=x^{2}$
\therefore Solution is

$$
\begin{array}{rlrl}
& y \times \text { I.F. } & =\int Q \times \text { I.F. } d x+c \\
\Rightarrow \quad y \cdot x^{2} & =\int x \cdot x^{2} d x+c \Rightarrow y \cdot x^{2}=\int x^{3} d x+c \\
\Rightarrow \quad y \cdot x^{2} & =\frac{1}{4} x^{4}+c \Rightarrow y=\frac{1}{4} x^{2}+c \cdot x^{-2}
\end{array}
$$

Hence, the solution is $y=\frac{1}{4} x^{2}+c . x^{-2}$.
(vii) The given differential equation is

$$
\begin{aligned}
& \left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0 \\
\Rightarrow \quad & \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{4 x^{2}}{1+x^{2}}
\end{aligned}
$$

Since it is a linear differential equation
$\therefore \quad P=\frac{2 x}{1+x^{2}}$ and $Q=\frac{4 x^{2}}{1+x^{2}}$
Integrating factor I.F. $=e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}=e^{\log \left(1+x^{2}\right)}=\left(1+x^{2}\right)$
\therefore Solution is $y \times$ I.F $=\int Q \times$ I.F. $d x+c$

$$
\begin{aligned}
& \Rightarrow & y \times\left(1+x^{2}\right) & =\int \frac{4 x}{1+x^{2}} \times\left(1+x^{2}\right) d x+c \\
& \Rightarrow & y \times\left(1+x^{2}\right) & =\int 4 x^{2} d x+c \Rightarrow y \times\left(1+x^{2}\right)=\frac{4}{3} x^{3}+c \\
& \Rightarrow & y & =\frac{4}{3} \frac{x^{3}}{\left(1+x^{2}\right)}+c\left(1+x^{2}\right)^{-1}
\end{aligned}
$$

Hence, the required solution is $y=\frac{4}{3} \frac{x^{3}}{\left(1+x^{2}\right)}+c\left(1+x^{2}\right)^{-1}$.
(viii) The given differential equation is

$$
\begin{array}{cc}
& y d x+(x+x y) d y=0 \\
\Rightarrow & (x+x y) d y=-y d x \Rightarrow x(1+y) d y=-y d x \\
\Rightarrow & \frac{1+y}{y} d y=-\frac{1}{x} d x
\end{array}
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
& & \int \frac{1+y}{y} d y & =-\int \frac{1}{x} d x \\
\Rightarrow & & \int\left(\frac{1}{y}+1\right) d y & =-\int \frac{1}{x} d x \\
\Rightarrow & & \log y+y & =-\log x+\log c \\
\Rightarrow & \log x+\log y+\log e^{y} & =\log c \\
\Rightarrow & & \log \left(x y \cdot e^{y}\right) & =\log c \\
& \therefore & x y & =c e^{-y}
\end{array}
$$

Hence, the required solution is $x y=c e^{-y}$.
(ix) The given differential equation is $\frac{d y}{d x}+y=\sin x$

Since, it it a linear differential equation
$\therefore \quad \mathrm{P}=1$ and $\mathrm{Q}=\sin x$
Integrating factor I.F. $=e^{\int P d x}=e^{\int 1 . d x}=e^{x}$
\therefore Solution is $y \times$ I.F. $=\int Q \times$ I.F. $d x+c$

$$
\begin{equation*}
\Rightarrow \quad y \cdot e^{x}=\int \sin x \cdot e^{x} d x+c \tag{1}
\end{equation*}
$$

Let $\mathrm{I}=\int \sin _{\mathrm{I}} x \cdot \mathrm{e}_{\mathrm{II}}^{x} d x$

$$
\begin{aligned}
& \mathrm{I}=\sin x \cdot \int e^{x} d x-\int\left(D(\sin x) \cdot \int e^{x} d x\right) d x \\
& \mathrm{I}=\sin x \cdot e^{x}-\int \underset{\mathrm{I}}{\cos x \cdot e^{x} d x} \\
& \mathrm{I}=\sin x \cdot e^{x}-\left[\cos x \cdot \int e^{x} d x-\int\left(D(\cos x) \int e^{x} d x\right) d x\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{I} & =\sin x \cdot e^{x}-\left[\cos x \cdot e^{x}-\int-\sin x \cdot e^{x} d x\right] \\
\mathrm{I} & =\sin x \cdot e^{x}-\cos x \cdot e^{x}-\int \sin x \cdot e^{x} d x \\
\mathrm{I} & =\sin x \cdot e^{x}-\cos x \cdot e^{x}-\mathrm{I} \\
\Rightarrow \mathrm{I}+\mathrm{I} & =e^{x}(\sin x-\cos x) \\
\Rightarrow \quad 2 \mathrm{I} & =e^{x}(\sin x-\cos x) \\
\therefore \quad \mathrm{I} & =\frac{e^{x}}{2}(\sin x-\cos x)
\end{aligned}
$$

From eq. (1) we get

$$
\begin{aligned}
y \cdot e^{x} & =\frac{e^{x}}{2}(\sin x-\cos x)+c \\
y & =\left(\frac{\sin x-\cos x}{2}\right)+c \cdot e^{-x}
\end{aligned}
$$

Hence, the required solution is

$$
y=\left(\frac{\sin x-\cos x}{2}\right)+c \cdot e^{-x}
$$

(x) The given differential equation is $\cot y d x=x d y$

$$
\Rightarrow \frac{d y}{\cot y}=\frac{d x}{x} \Rightarrow \tan y d y=\frac{d x}{x}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \quad \int \tan y d y=\int \frac{d x}{x} \Rightarrow \log \sec y=\log x+\log c \\
\Rightarrow & \log \sec y-\log x=\log c \\
\Rightarrow & \quad \log \left|\frac{\sec y}{x}\right|=\log C \\
\therefore & \frac{\sec y}{x}=C \Rightarrow \frac{x}{\sec y}=\frac{1}{C} \Rightarrow \frac{x}{\sec y}=C \quad\left[\frac{1}{c}=C\right] \\
\therefore & x=C \sec y
\end{aligned}
$$

Hence, the required solution is $x=C \sec y$.
(xi) The given differential equation is

$$
\begin{aligned}
\quad \frac{d y}{d x}+y= & \frac{1+y}{x} \\
\Rightarrow \quad \frac{d y}{d x}+y & =\frac{1}{x}+\frac{y}{x} \\
\Rightarrow \quad \frac{d y}{d x}+y-\frac{y}{x} & =\frac{1}{x} \quad \Rightarrow \frac{d y}{d x}+\left(1-\frac{1}{x}\right) y=\frac{1}{x}
\end{aligned}
$$

Here $\mathrm{P}=\left(1-\frac{1}{x}\right)$

$$
\begin{aligned}
\therefore \text { I.F. } & =e^{\int P d x}=e^{\int\left(1-\frac{1}{x}\right) d x}=e^{(x-\log x)} \\
& =e^{x} \cdot e^{-\log x}=e^{x} \cdot e^{\log \frac{1}{x}}=e^{x} \cdot \frac{1}{x}
\end{aligned}
$$

Hence, the required I.F. $=e^{x} \cdot \frac{1}{x}$.
Q77. State True or False for the following:
(i) Integrating factor of the differential equation of the form $\frac{d x}{d y}+P_{1} x=Q_{1}$ is given by $e^{\int P_{1} d y}$.
(ii) Solution of the differential equation of the type $\frac{d x}{d y}+P_{1} x=Q_{1}$ is given by x. I.F. $=\int($ I.F. $) Q_{1} d y$.
(iii) Correct substitution for the solution of the differential equation of the type $\frac{d y}{d x}=f(x, y)$, where $f(x, y)$ is a homogeneous function of zero degree is $y=v x$.
(iv) Correct substitution for the solution of the differential equation of the type $\frac{d x}{d y}=g(x, y)$, where $g(x, y)$ is a homogeneous function of the degree zero is $x=v y$.
(v) Number of arbitrary constants in the particular solution of a differential equation of order two is two.
(vi) The differential equation representing the family of circles $x^{2}+(y-a)^{2}=a^{2}$ will be of order two.
(vii) The solution of $\frac{d y}{d x}=\left(\frac{y}{x}\right)^{1 / 3}$ is $y^{2 / 3}-x^{2 / 3}=c$.
(viii) Differential equation representing the family of curves

$$
y=e^{x}(A \cos x+B \sin x) \text { is } \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0
$$

(ix) The solution of differential equation $\frac{d y}{d x}=\frac{x+2 y}{x}$ is
$x+y=k x^{2}$.
(x) Solution of $\frac{x d y}{d x}=y+x \tan \frac{y}{x}$ is $\sin \left(\frac{y}{x}\right)=c x$.
(xi) The differential equation of all non-horizontal lines in a plane is $\frac{d^{2} x}{d y^{2}}=0$.
Sol. (i) True
I.F. of the given differential equation

$$
\frac{d x}{d y}+P_{1} x=Q \text { is } e^{\int P_{1} d y}
$$

(ii) True
(iii) True
(iv) True
(v) False

Since particular solution of a differential equation has no arbitrary constant.
(vi) False

We know that the order of the differential equation is equal to the number of arbitrary constants.
(vii) True

The given differential equation is

$$
\begin{aligned}
\frac{d y}{d x} & =\left(\frac{y}{x}\right)^{1 / 3} \\
\Rightarrow \quad \frac{d y}{d x} & =\frac{y^{1 / 3}}{x^{1 / 3}} \Rightarrow \frac{d y}{y^{1 / 3}}=\frac{d x}{x^{1 / 3}}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{aligned}
& \int \frac{d y}{y^{1 / 3}}=\int \frac{d x}{x^{1 / 3}} \Rightarrow \int y^{-1 / 3} d y=\int x^{-1 / 3} d x \\
\Rightarrow & \frac{1}{-\frac{1}{3}+1} y^{-1 / 3+1}=\frac{1}{-1 / 3+1} \cdot x^{-1 / 3+1}+c \\
\Rightarrow \quad & \frac{3}{2} y^{2 / 3}=\frac{3}{2} x^{2 / 3}+c \\
\Rightarrow \quad & y^{2 / 3}=x^{2 / 3}+\frac{2}{3} c \Rightarrow y^{2 / 3}-x^{2 / 3}=k\left[k=\frac{2}{3} c\right]
\end{aligned}
$$

(viii) True

Given equation is

$$
y=e^{x}(A \cos x+B \sin x)
$$

Differentiating both sides, we get

$$
\begin{aligned}
& \frac{d y}{d x}=e^{x}(-A \sin x+B \cos x)+(A \cos x+B \sin x) e^{x} \\
& \frac{d y}{d x}=e^{x}(-A \sin x+B \cos x)+y
\end{aligned}
$$

Again differentiating w.r.t. x, we get

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=e^{x}(-A \cos x-B \sin x)+(-A \sin x+B \cos x) \cdot e^{x}+\frac{d y}{d x} \\
& \frac{d^{2} y}{d x^{2}}=-e^{x}(A \cos x+B \sin x)+\frac{d y}{d x}-y+\frac{d y}{d x} \\
& \frac{d^{2} y}{d x^{2}}=-y-y+2 \frac{d y}{d x} \quad \therefore \quad \frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+2 y=0
\end{aligned}
$$

(ix) True

The given differential equation is

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{x+2 y}{x} \\
\Rightarrow \quad \frac{d y}{d x} & =1+2 \frac{y}{x} \quad \Rightarrow \frac{d y}{d x}-\frac{2 y}{x}=1
\end{aligned}
$$

Here, $\mathrm{P}=\frac{-2}{x}$ and $\mathrm{Q}=1$
Integrating factor I.F. $=e^{\int \frac{-2}{x} d x}=e^{-2 \log x}=e^{\log x^{-2}}=\frac{1}{x^{2}}$
\therefore Solution is $y \times$ I.F. $=\int Q \times$ I.F. $d x+c$
$\Rightarrow y \times \frac{1}{x^{2}}=\int 1 \times \frac{1}{x^{2}} d x+c$
$\Rightarrow \quad \frac{y}{x^{2}}=\int \frac{1}{x^{2}} d x+c \Rightarrow \frac{y}{x^{2}}=-\frac{1}{x}+c$
$\Rightarrow \quad y=-x+c x^{2} \Rightarrow y+x=c x^{2}$
(x) True
The given differential equation is

$$
\begin{aligned}
& \qquad \begin{array}{c}
x \frac{d y}{d x}=y+x \tan \left(\frac{y}{x}\right) \\
x \frac{d y}{d x}=-x \tan \left(\frac{y}{x}\right)=y \\
\Rightarrow \frac{d y}{d x}-\tan \left(\frac{y}{x}\right)=\frac{y}{x} \Rightarrow \frac{d y}{d x}=\frac{y}{x}+\tan \left(\frac{y}{x}\right) \\
\text { Put } y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\
\Rightarrow v+x \cdot \frac{d v}{d x}=\frac{v x}{x}+\tan \left(\frac{v x}{x}\right)
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow v+x \frac{d v}{d x}=v+\tan v \Rightarrow x \frac{d v}{d x}=\tan v \\
& \Rightarrow \quad \frac{d v}{\tan v}=\frac{d x}{x} \Rightarrow \cot v d v=\frac{d x}{x}
\end{aligned}
$$

Integrating both sides, we get

$$
\begin{array}{rlrl}
\int \cot v d v & =\int \frac{d x}{x} \Rightarrow \log \sin v=\log x+\log c \\
\Rightarrow \quad \log \sin v-\log x & =\log c \Rightarrow \log \sin \frac{y}{x}=\log x c \\
\therefore \quad & \sin \frac{y}{x} & =x c
\end{array}
$$

(xi) True

Let $y=m x+c$ be the non-horizontal line in a plane
$\therefore \frac{d y}{d x}=m$ and $\frac{d^{2} y}{d x^{2}}=0$.

