## St. Paul's School

## Class XII - Pre-Board Examination (2023-24) **Mathematics**

Time -3 hrs.

Max. Marks - 80

## General instructions:

(i) This question paper contains five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.

(ii) Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.

(iii) Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.

(iv) Section C has 6 Short Answer (SA) type questions of 3 marks each.

(v) Section D has 4 Long Answer (LA) type questions of 5 marks each.

(vi) Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.

## Section A (1mk each)

- 1. The value of k, so that the function  $f(x) = \begin{cases} kx^2 + 5, x \le 1 \\ 2, x > 1 \end{cases}$  is continuous at x = 1 is
  - a. -2
  - b. 2
  - c. -3
  - d. 3
- 2. If  $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ , then the value of x + y is

  - b. 2
  - c. 3
  - d. 0
- The coordinates of the foot of the perpendicular drawn from the point (2, -3, 4) on the y-axis is
  - a. (2,3,4)
  - b. (-2, -3, -4)
  - c. (0, -3, 0)
  - d. (2,0,4)
- 4. A 2 × 2 matrix whose elements are given by  $a_{ij} = |i^2 j|$  is
  - a.  $\begin{bmatrix} 0 & 2 \\ 1 & 3 \end{bmatrix}$ b.  $\begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$ c.  $\begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$

- 5. The principal value of  $\tan^{-1} \left( \tan \frac{3\pi}{\kappa} \right)$  is
- 6. An urn contains two red and four black balls. Two balls are drawn at random. Probability that they are of the different colors is
  - a. 2/5
  - b. 1/15
  - c. 8/15
  - d. 4/15
- 7. If  $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 2 & 3 \\ 3 & 3 & 5 \end{bmatrix}$ , then the value of A(adjA) is

  a.  $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ b.  $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ c.  $\begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$ d.  $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 7 \\ 0 & 0 & 2 \end{bmatrix}$
- 8. The graph of the inequality 2x + 3y > 6 is
  - a. A half plane that contains the origin
  - b. Half plane that neither contains the origin nor the points on the line 2x +3y = 6
  - c. Whole XOY plane excluding the points on the line 2x + 3y = 6
  - d. Entire XOY plane
- 9. The magnitude of the projection of  $2\hat{i} \hat{j} + \hat{k}$  on  $\hat{i} 2\hat{j} + 2\hat{k}$  is
  - a. 1/2 units
  - b. 2 units
  - c. 3 units
  - d. 1/3 units

10. For 
$$A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$
, value of  $A^{-1}$  is

a.  $\begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$ 

b.  $\begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$ 

c.  $\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$ 

d.  $\begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$ 

a. 
$$\begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$$

b. 
$$\begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix}$$

c. 
$$\begin{bmatrix} -1 & -1 \\ 4 & 3 \end{bmatrix}$$

d. 
$$\begin{bmatrix} 1 & -2 \\ 1 & -3 \end{bmatrix}$$

11. Vector of magnitude 5 units and in the direction opposite to  $2\hat{\imath} + 3\hat{\jmath} - 6\hat{k}$  is

a. 
$$5(2\hat{i} + 3\hat{j} - 6\hat{k})$$

b. 
$$-5(2\hat{\imath} + 3\hat{\jmath} - 6\hat{k})$$

c. 
$$\frac{5}{7}(2\hat{\imath}+3\hat{\jmath}-6\hat{k})$$

d. 
$$\frac{5}{7}\left(-2\hat{\imath}-3\hat{\jmath}+6\hat{k}\right)$$

12. Corner points of the feasible region determined by the system of linear constraints are (0,3), (1,1) and (3,0). Let Z = px + qy, where p, q > 0. Condition on p and q, so that the minimum value of Z occurs at (3,0) and (1,1) is

a. 
$$p = 2q$$

b. 
$$p = q$$

c. 
$$p = 3q$$

d. 
$$q = 2p$$

13. If  $|\vec{a}| = 4$  and  $-3 \le \lambda \le 3$ , then  $|\lambda \vec{a}|$  lies in

14. The degree of the differential equation  $1 + \left(\frac{dy}{dx}\right)^2 = x$  is

d. None of these

15. The interval in which the function f is given by  $f(x) = x^2 e^{-x}$  is strictly increasing is

a. 
$$(-\infty, \infty)$$

b. 
$$(-\infty, 0)$$

c. 
$$(2,\infty)$$

16. The area of a triangle formed by the vertices O,A and B where  $\overrightarrow{OA} = \hat{\imath} + 2\hat{\jmath} + 3\hat{k}$  and  $\overrightarrow{OB} = -3\hat{\imath} - 2\hat{\jmath} + \hat{k}$  is

- a.  $3\sqrt{5}$  sq units
- b.  $5\sqrt{5}$  sq units
- c.  $6\sqrt{5}$  sq units
- d. 4 sq units

17. If y = f(x) and  $f'(x) = e^{\sqrt{x}}$ , then  $\frac{dy}{dx}$  is

- a.  $2xe^{2x}$
- b.  $2xe^x$
- c.  $2xe^{x^2}$

18.  $\int_0^{\frac{\pi}{8}} tan^2(2x) dx$  is equal to

- a.  $\frac{4-\pi}{8}$ b.  $\frac{4+\pi}{8}$ c.  $\frac{4-\pi}{4}$ d.  $\frac{4-\pi}{2}$

19. Assertion (A): the matrix  $A = \begin{bmatrix} 5 & 0 \\ 0 & 3 \\ 11 & 0 \end{bmatrix}$  is a diagonal matrix

Reason (R): if  $A = [a_{ij}]_{m \times m}$ , where  $a_{ij} = 0$  if  $i \neq j$ , then A is called a diagonal matrix

20. Assertion (A): if  $e^{-xy} + \log(xy) + \sin^2(xy) = 0$ , then  $\frac{dy}{dx} = -\frac{y}{x}$ 

" Reason (R): 
$$\frac{d}{dx}(xy) = 0 \Rightarrow \frac{dy}{dx} = -\frac{y}{x}$$

Section B (2 mks each)

How many equivalence relations on the set {1,2,3} containing (1,2) and (2,1) are there in all? Justify your answer

Show that 
$$\tan\left(\frac{1}{2}\sin^{-1}\frac{3}{4}\right) = \frac{4-\sqrt{7}}{3}$$

23. If  $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$  and  $I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ , then find k so that  $A^2 = 5A + kI$ 

24. If 
$$f(x) = \sqrt{\frac{\sec x - 1}{\sec x + 1}}$$
, then find  $f'(\frac{\pi}{3})$ 

$$(25) \text{Find } \int \frac{\log x}{(1 + \log x)^2} dx$$

Section C (3 mks each)

= 26. Find the matrix P satisfying the matrix equation 
$$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} P \begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$$

$$= 27. \text{ If } y = \log(1 + 2t^2 + t^4), x = \tan^{-1} t, \text{ find } \frac{d^2y}{dx^2}$$

28. Find 
$$\int e^{2x} \sin(3x+1) dx$$

29. Find the solution of 
$$x^2ydx - (x^3 + y^3)dy = 0$$

30. Solve the following LPP graphically Minimize 
$$Z = 5x + 7y$$
 Subject to the constraints

$$2x + y \ge 8$$
$$x + 2y \ge 10$$
$$x, y \ge 0$$

31. Three machines  $E_1$ ,  $E_2$ ,  $E_3$  in a certain factory producing electric bulbs, produce 50%, 25% and 25% respectively, of the total daily output of electric bulbs. It is known that 4% of the bulbs produced by each of the machines  $E_1$ ,  $E_2$  are defective and that 5% produced by machine  $E_3$  are defective. If one bulb is picked up at random from a day's production, calculate the probability that it is defective.

Section D (5 mks each)

- 32. Find the points at which the function  $f(x) = (x-2)^4(x+1)^3$  has
  - a. Local maxima
  - b. Local minima
  - c. Point of inflexion

(33) Evaluate 
$$\int_0^1 \frac{\log(1+x)}{1+x^2} dx$$

N

(34). Solve the differential equation: 
$$(\cot^{-1} y + x)dy = (1 + y^2)dx$$

Find the equation of the line through the point (1,-1,1) and perpendicular to the lines joining the points (4,3,2), (1,-1,0) and (1,2,-1), (2,1,1)

Section E (Case study - 4 mks each) 36. A carpenter designs a window in the form of a rectangle surmounted by a semi-circle. The total perimeter of the window is 10 m.

- a. Write the perimeter in terms of x and y
- Express y in terms of x and  $\pi$
- Find the value of x for maximum light
- 37. In a class, 40% students study mathematics, 25% study biology and 15% study both mathematics and biology. One student is selected at random

M = event of studying mathematics

B = event of studying biology

- What is the value of P(M)
- What is the value of P(B)
- Find P(M/B)
- 38. (a) Evaluate  $\int_{1}^{4} \frac{\sqrt{5-x}}{\sqrt{5-x}+\sqrt{x}} dx$  (b) Evaluate  $\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \frac{1}{1+\sqrt{\cot x}} dx$