Name	Anound	ita
Ivaille	FILLUIC	im

Class & Section _____ Roll No. __

FIRST TERMINAL EXAMINATION-2014-2015

Class-XII

Subject-Mathematics

Time Allowed: 3 Hrs.

M.M.: 100

Please Check the Total Marks

Do not write any answers on the questions paper. Check the total marks. Attempt all the questions:

Section A consists of 6 questions carrying 1 mark each.

Section B consists of 13 questions carrying 4 marks each.

Section C consists of 7 questions carrying 6 marks each.

All the questioins are compulsory however internol choice has been given in some of the questions.

Section-A

- Justify whether or not given operation of '*' on N as $a*b = \frac{a+b}{2}$ is a binary operation?
- Find the value of $\cos(2\cos^{-1}x + \sin^{-1}x)$
- cos15° sin15° Evaluate the determinant 3. sin 75° sin 15°
- Find the derivative of $\sin (\sin (\cos (x^2)))$ with respect to x.
- If Rolle's theorem is justified for the function $f(x)=4x^2-12x+9$, $x \in [0, 3]$. Find the 5. value of $c \in (1, 3)$
- Find $\int \frac{dx}{\sin^2 x \cos^2 x}$

Section-B

Let $F: N \to R$ be a function defind as $f(x)=4x^2+12x+15$ show that $f: N\to Range(f)$ is invertible. Find the inverse of *f*.

8. Let $f: X \to Y$ be a function. Define a relation R in X given by $R = \{(a,b): f(a) = f(b)\}$. Examine, if R in an equivalence relation.

OR

Let X be a non-empty set and P(X) be the power set of X. Let a binary operation '*' on P(X) be defined by A*B = (A-B) U (B-A) for all A, $B \in p(X)$. Show '*' is commutative and associative. Also find the identity and inverse elements if any.

Solve the following equation for x:

$$\tan^{-1}(x+1) + \tan^{-1}(x-1) = \tan^{-1} 8/31$$

OR

Show that :
$$2 \tan^{-1} \left(\sqrt{\frac{a-b}{a+b}} \sqrt{\frac{1-\cos x}{1+\cos x}} \right) = \cos^{-1} \left(\frac{a\cos x+b}{a+b\cos x} \right)$$

If
$$A = \begin{bmatrix} \cos \alpha + \sin \alpha & \sqrt{2} \sin \alpha \\ -\sqrt{2} \sin \alpha & \cos \alpha - \sin \alpha \end{bmatrix}$$
, prove that

$$A^{n} = \begin{bmatrix} \cos n\alpha + \sin n\alpha & \sqrt{2}\sin n\alpha \\ -\sqrt{2}\sin n\alpha & \cos n\alpha - \sin n\alpha \end{bmatrix} \text{ for all } n \in \mathbb{N}.$$

11. Prove that:

Show that:

If the function f defined by

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin x}{x} &, & x < 0 \\ \frac{c}{\sqrt{x + bx^2} - \sqrt{x}} &, & x > 0 \end{cases}$$

is continous at x = 0, then find the values of a, b and c.

13. Differentiate $x\sin^{-1}x$ with respect to $\sin^{-1}x$.

14. If
$$x = a (\theta - \sin \theta)$$
, $y = a(1 - \cos \theta)$, find $\frac{d^2y}{dx^2}$ at $\theta = \pi/2$

- The two equal sides of an isosceles triangle with fixed base b are decrearing at the rate of 3 cm/sec. How fast is the area decreasing when two equal sides are equal to the base?
- 16. Find the approximate value of tan 46°, given that $1^{\circ} = 0.01745$ radian.
- Find $\int \frac{\sin x}{\sqrt{1+\sin x}} dx$ OR

 Evaluate $\int \frac{4x+5}{\sqrt{2x^2+x-3}} dx$ $\int \frac{3^2}{\sqrt{2x^2+x-3}} dx$ $\int \frac{3^2}{\sqrt{2x^2+x-3}} dx$
 - (18) Evaluate: $\int \frac{\sqrt{x^2 + 1} [\log(x^2 + 1) 2\log x)}{x^4} dx$
- 19. Find the area of the region in the first quadrant enclosed by the x-axis, the line y = x and the circle $x^2 + y^2 = 32$.

Section-C

- 26. Using elementary operation, find the inverse of the matrix $A = \begin{bmatrix} 2-1 & 4 \\ 4 & 0 & 2 \\ 3-2 & 7 \end{bmatrix}$
- Solve the following system of equations, using matrices:

$$\frac{2}{x} + \frac{3}{y} + \frac{10}{z} = 4, \frac{4}{x} - \frac{6}{y} + \frac{5}{z} = 1, \frac{6}{x} + \frac{9}{y} - \frac{20}{z} = 2$$

22

Differentiate $\sin^{-1}\left(\frac{2^{x^{+}}}{1+4^{x}}\right)$ with respect to x.

Also find its domain.

Find the equation of tangents to the curve $y = \cos{(x+y)}$, $-2\pi \le x \le 2\pi$ that are parallel to the line x + 2y = 0

OR

Find intervals in which the function given by $f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$

is strictly increasing and strictly decreasing.

24

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height 'h' and semi vertical angle α is one-third that of the cone and the greatest-volume of the cylinder is

$$\frac{4}{27} \pi h^3 \tan^2 \alpha$$

25. Evaluate $\int \sqrt{\tan x} \, dx$

OR

Evaluate $\int_{1}^{4} (x^2 - x + e^x) dx$ using limit of a sum method.

26 Using properties of definite integral, evaluate

$$\int_{0}^{\pi} \log(1+\cos x) dx$$