Ansile (5)

GYAN BHARATI SCHOOL Second Terminal Examination (2016 - 17)

Class - SS2

Subject - Mathematics

Time Allowed - 3 Hour

MM - 100

General Instructions:

- (i) Write your name and Roll number on the question paper as soon as you get it. No rough work is to be done on the question paper.
- (ii) There are 4 printed pages in this paper.
- (ii) There are 29 questions in all and all questions are compulsory.
- (iii) Marks for each question are indicated against it.
- (iv) Calculators are not allowed. However you may ask for log tables, if required.
- (v) There is no overall choice. However internal choice is provided in 3 questions of four marks each and 3 questions of six marks each.
- (vi) Steps are required in all one marker questions.

SECTION A (1 MARK QUESTIONS) (Steps are required in 1 markers)

Q1 If
$$f(x) = \frac{1}{x-1}$$
, then find the points of discontinuity of $f(f(x))$. [1]

Q3 Find |adj.A| if A =
$$\begin{bmatrix} 2 & 5 & 3 \\ 3 & 4 & 1 \\ 1 & 6 & 3 \end{bmatrix}$$
. [1]

Q4 Discuss the applicability of Rolle's theorem for y = secx on
$$[\pi/4, 7\pi/4]$$
. [1]

SECTION B (2 MARK QUESTIONS)

Q5 Find least value of 'a' for which 2x2 - 3ax + 7 is decreasing function on [1,2].[2]

Q6 Find the value of |adj.(adj.A)| if A =
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 3 & 2 & 5 \end{bmatrix}$$
. [2]

Q7 If
$$y = \frac{1}{1 + x^{n-m} + x^{p-m}} + \frac{1}{1 + x^{m-n} + x^{p-n}} + \frac{1}{1 + x^{m-p} + x^{n-p}}$$
, then find $\frac{dy}{dx}$ at $x = e^{m^p}$. [2]

Q8 Evaluate:
$$\sin^{-1}(\sin 10)$$
. [2]

- Q9 If x, y, z ∈ [-1, 1], such that $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = 3\pi$, then find the value of $x^2y^2 + y^2z^2 + z^2x^2$. [2]
- Q10 Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that $gof = fog = I_R$. [2]
- Q11 Check the continuity of $f(x) = \begin{cases} \frac{[x]-1}{x-1} & \text{when } x \neq 1 \\ -1 & \text{when } x = 1 \end{cases}$, at x = 1, where [.] represents greatest integer function.
- Q12 Without expanding at any stage, prove that $\begin{vmatrix} 1 & \log_X y & \log_X z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix} = 0.$ [2]

SECTION C (4 MARK QUESTIONS)

- A spherical balloon is used for spreading the message "SAVE TREES". The radius of the balloon is increasing at the rate of π cm/s. At what rate is its volume increasing when its diameter is 4cm. Why it is important to save trees? [4]
- Q14 Find the intervals in which the function $f(x) = -2x^3 + 9x^2 12x + 18$, is (i) Increasing, (ii) Decreasing. [4]
- Q15 If $f(x) = 4x^3 + 5x^2 + 2$, find approximate value of f(2.01), using differentials. [4]

Verify Rolle's theorem for $f(x) = (x - a)^m (x - b)^n$ on [a, b] where m, $n \in \mathbb{N}$.

O16 Using graphical method, solve the following linear programming problem: [4]

Maximize Z = 4x + 5y subject to the constraints:

$$2x + y \le 30$$
; $x + 2y \le 24$; $x \ge 3$; $y \le 9$; $y \ge 0$

- Prove that the product of following matrices (in any order) is a null matrix, where θ and ϕ differ by an odd multiple of $\pi/2$: $A = \begin{bmatrix} \cos^2\theta & \cos\theta \sin\theta \\ \cos\theta \sin\theta & \sin^2\theta \end{bmatrix}$, $B = \begin{bmatrix} \cos^2\theta & \cos\theta \sin\theta \\ \cos\theta \sin\theta & \sin^2\theta \end{bmatrix}.$ [4]
- Q18 If $y = \cos^{-1}\left(\frac{3+5\cos x}{5+3\cos x}\right)$, then prove that $\cos x = \frac{4-5\frac{dy}{dx}}{3\frac{dy}{dx}}$. [4]

Q19 If
$$x = \frac{\sin^3 t}{\sqrt{\cos 2t}}$$
 and $y = \frac{\cos^3 t}{\sqrt{\cos 2t}}$, then prove that $\frac{dy}{dx} = -\cot(3t)$. [4]

Q20 If
$$y = (x + \sqrt{x^2 + 1})^m$$
; prove that $(x^2 + 1) \frac{d^2y}{dx^2} + x \frac{dy}{dx} - m^2 y = 0$. [4]

OR

If $(x-a)^2 + (y-b)^2 = c^2$, for some c > 0, prove that $\frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}}$ is a constant independent of a and b.

Q21 Find maximum and minimum values of
$$(\sin^{-1} x)^3 + (\cos^{-1} x)^3$$
. [4]

- Q22 Show that the following relation defined on N x N is equivalence relation: [4] $(a, b) R (c, d) \Leftrightarrow ad(b + c) = bc(a + d)$
- Q23 If a_1 , a_2 , a_3 ,...., a_n are in A.P. with common difference 'd', then prove that : [4] $\tan^{-1}\left(\frac{d}{1+a_1a_2}\right) + \tan^{-1}\left(\frac{d}{1+a_2a_3}\right) + \tan^{-1}\left(\frac{d}{1+a_3a_4}\right) + \cdots \text{ upto n terms.} = \tan^{-1}\left(\frac{n \, d}{1+a_1a_{n+1}}\right)$

Solve: $\sin^{-1} \left[\sin \left(\frac{2x^2 + 4}{1 + x^2} \right) \right] < \pi - 3$

SECTION D (6 MARK QUESTIONS)

A tall electric pole is to be kept in vertical position by a stretched straight wire from the pole to the ground. The wire has to clear a wall 6m high and 4m from the pole. What is the least length of the wire that can be used between the pole and the ground. $2 \times \left(2^{2/3} + 3^{2/3}\right)^{3/2}$ [6]

The fuel charges for running a train are proportional to the square of the speed generated in km per hour and costs Rs.48 per hour at 16 km/hr. What is the most economical speed if the fixed charges i.e., salaries etc. amount to Rs.300 per hour.

A company manufactures two types of sign boards made of ply wood, displaying - SAVE ENVIORNMENT and BE COURTEOUS. Each sign board of type A requires 5 minutes for cutting and 10 minutes for assembling. Each sign board of type B requires 8 minutes for cutting and 8 minutes for assembling. There are 3 hours 20 minutes available for cutting and 4 hours available for assembling. The profit is 50 paisa for each of type A and 60 paisa for each of type B sign boards. How many sign boards of each type should the company manufacture in order to

maximize the profit ? What is the maximum profit ? Give your views abovalues involved in the question.

Q26 Show that the normal at any point θ to the curve $x = a(\cos\theta + \theta \sin\theta)$, $y = a(\sin\theta - \theta \cos\theta)$ is at a constant distance from the origin. [6]

OR

If $x \cos \alpha + y \sin \alpha = p$ may be a tangent to the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then prove that $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha = p^2$.

- Q27 The sum of surface areas of a rectangular parallelopiped with sides x, 2x, x/3 and a sphere of radius r is given to be constant. Prove that the sum of their volumes is least if x = 3r. Also find the minimum value of the sum of volumes. [6]
- Q28 Find the product A B, where A = $\begin{pmatrix} 1 & 4 & 0 \\ -1 & 2 & 2 \\ 0 & 0 & 2 \end{pmatrix}$, B = $\begin{pmatrix} 4 & -8 & 8 \\ 2 & 2 & -2 \\ 0 & 0 & 6 \end{pmatrix}$. [6]

Hence solve :

$$x - y = 0$$
; $2x + y = 3$; $y + z = 2$

Q29 If x, y, z are all different and $\begin{vmatrix} x & x^3 & x^4 - 1 \\ y & y^3 & y^4 - 1 \\ z & z^3 & z^4 - 1 \end{vmatrix} = 0$, then show that $\begin{vmatrix} x & x^3 & x^4 - 1 \\ x & xyz & x^4 - 1 \end{vmatrix} = 0$, then show that

SECTION D. NOMARK QUESTIONS)

Prove that:
$$\begin{vmatrix} a & b-c & b+c \\ c+a & b & c-a \\ a-b & a+b & c \end{vmatrix} = (a+b+c)(a^2+b^2+c^2).$$

The fuel charges for running a train are proportional to the square of the soach

well a meet for each of type A and 50 pelsa for each of type B sign boars, they to the total and the second type and type and type should at a superior type and type

= X = 92 (VX + 310)