

DELHI INTERNATIONAL SCHOOL, DWARKA

HALF YEARLY EXAMINATION (2017-18) SUBJECT- MATHS SET-I CLASS - XII

General Instructions:

- The questions paper consists of 29 questions divided into three sections A, B and C. Section A comprises of 4 All questions are compulsory. questions of one mark each, Section B comprises of 8 questions of four marks each, and Section C comprises of 11 questions of six marks each and section D Comprises of 6 question of 6 marks each.
- All questions of Section are to be answered in one word, one sentence or as per the exact requirement of the iii.
- Use of calculator is not permitted. You may ask for logarithmic tables, if required.

DURATION: 3 HOURS

M .Marks: 100

SECTION- A

- What is the principal value of $\cos^{-1}\cos\left(\frac{2\pi}{3}\right) + \sin^{-1}\sin\left(\frac{2\pi}{3}\right)$.
- Q2. Write the value of $\frac{d}{dx}$ (cosec⁻¹ x).
- Q3 Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. State whether f is one one or
- Q4. Evaluate: |cos15° sin15° sin 75° cos 75°

SECTION-B

- Q5. Evaluate: $\int sin^3x \, dx$.
- .Q6 Find $\int \cos^{-1}(\sin x) dx$.

Q7. Find 'x' if
$$\begin{bmatrix} 5 & 3x \\ 2y & z \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 12 & 6 \end{bmatrix}^T$$

Q8. If A is a square matrix of order 3×3 such that | adj.(A) | = 256, find | A |

Q9. If $\cot^{-1}(-1/5) = x$, find $\sin x$.

Q10. Find: $\int (\frac{1}{\sin x \cos x})^2 dx$

Q11. If $x = 2\cos\theta - \cos 2\theta$, and $y = 2\sin\theta - \sin 2\theta$, find d^2y/dx^2 .

Q42. Show that $\sin^{-1}(3/5) - \sin^{-1}(8/17) = \cos^{-1}(84/85)$

SECTION-C.

Q13. Find x:
$$\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix}_{5.5}$$

Q14. Solve for 'x':
$$tan^{-1}(x+1) + tan^{-1}(x-1) = tan^{-1} \frac{8}{31}$$

OR

If $tan^{-1}x + tan^{-1}y + tan^{-1}z = \pi$, prove that, x + y + z = xyz.

Using properties of determinants, prove that
$$\begin{vmatrix} -a^2 & ab & ac \\ ba & -b^2 & bc \\ ca & cb & -c^2 \end{vmatrix} = 4 a^2 b^2 c^2$$

Q26. Find the interval in which the function $f(x) = \sin^4 x + \cos^4 x$, $0 \le x \le \pi/2$ is (i)increasing (ii)decreasing.

Sand is pouring from a pipe from a pipe at the rate of 12 cm³/s. The falling sand forms a cone on the ground in such a way that he height of the cone is always one- sixth of the radius of cone. How fast is the height of sand –cone increasing when the height is 4 cm.?

Using elementary transformation, find the inverse of A =
$$\begin{bmatrix} 2 & -3 & 3 \\ 2 & 2 & 3 \\ 3 & -2 & 2 \end{bmatrix}$$

Express the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ -6 & 8 & 3 \\ -4 & 6 & 5 \end{bmatrix}$ as a sum of a symmetric and a skew-symmetric matrix.

Q18. Find all points of discontinuity of F(x), where
$$F(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x < 0 \\ x + 1, & \text{if } x \ge 0 \end{cases}$$

Q19. Integrate:
$$\int \frac{8x+13}{\sqrt{4x+7}} dx$$

Q20. If
$$y = e^{a\cos^{-1}x}$$
, $-1 \le x \le 1$, show that $(1-x^2)\frac{d^2x}{dx^2} - x \frac{dy}{dx} - a^2y = 0$

Q21. Using differentials, find the approximate value of $\sqrt{25.2}$

Q22.5 valuate:
$$\int_{1}^{3} (2x^2 + 3x + 5) dx$$
 as limit of sums.

223. Find the intervals in which the function $f(x) = (x+1)^3 (x-3)^3$ is strictly increasing or decreasing.

OF

Find the equation of the tangent and the normal to the curve x=1 $-\cos\theta$, y= θ - $\sin\theta$ at θ = $\pi/4$.

SECTION D

- Q24 If the sum of lengths of hypotenuse and a side of a right angled triangle is given, show that the area of the triangle is maximum when the angle between them is $\frac{\pi}{3}$.
- Q25. Using matrix method, solve the following system of equations: X + y + z = 3; x 2y + 3z = 2; and 2x y + z = 2

ng (ii)decreasing.

32 31

Q26. Differentiate: $\tan^{-1}\left\{\frac{\sqrt{1-x^2-1}}{x}\right\}$ with respect to $\sin^{-1}\left\{\frac{2x}{1+x^2}\right\}$.

Q27. Prove that: $\sin^{-1}(\frac{12}{13}) + \cos^{-1}(\frac{4}{5}) + \tan^{-1}\frac{63}{16} = \pi$.

O28. Find all points of local maxima and local minima with their values of the function $f(x) = \frac{-3}{4}x^4 + 2x^3 + \frac{9}{2}x^2 + 100$.

Q29.. Evaluate: (i) $\int \frac{1+\cos 4x}{\cot x - \tan x} dx$. (ii) $2 \int \frac{\sqrt{\tan x}}{\sin 2x} dx$.

N ND SCF VIDO SCF VIDO SINGU To a bis balley in swan godes