Exercise 8.1

Question 1:

Find the area of the region bounded by the curve $y^{2}=x$ and the lines $x=1, x=4$ and the x-axis.

Answer

The area of the region bounded by the curve, $y^{2}=x$, the lines, $x=1$ and $x=4$, and the x-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{1}^{4} y d x \\
& =\int^{4} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4} \\
& =\frac{2}{3}\left[(4)^{\frac{3}{2}}-(1)^{\frac{3}{2}}\right] \\
& =\frac{2}{3}[8-1] \\
& =\frac{14}{3} \text { units }
\end{aligned}
$$

Question 2:

Find the area of the region bounded by $y^{2}=9 x, x=2, x=4$ and the x-axis in the first quadrant.
Answer

The area of the region bounded by the curve, $y^{2}=9 x, x=2$, and $x=4$, and the x-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{2}^{4} y d x \\
& =\int_{2}^{4} 3 \sqrt{x} d x \\
& =3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[x^{\frac{3}{2}}\right]_{2}^{4} \\
& =2\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =2[8-2 \sqrt{2}] \\
& =(16-4 \sqrt{2}) \text { units }
\end{aligned}
$$

Question 3:

Find the area of the region bounded by $x^{2}=4 y, y=2, y=4$ and the y-axis in the first quadrant.
Answer

The area of the region bounded by the curve, $x^{2}=4 y, y=2$, and $y=4$, and the y-axis is the area $A B C D$.

$$
\begin{aligned}
\text { Area of } \mathrm{ABCD} & =\int_{2}^{4} x d y \\
& =\int_{2}^{4} 2 \sqrt{y} d y \\
& =2 \int_{2}^{4} \sqrt{y} d y \\
& =2\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4} \\
& =\frac{4}{3}\left[(4)^{\frac{3}{2}}-(2)^{\frac{3}{2}}\right] \\
& =\frac{4}{3}[8-2 \sqrt{2}] \\
& =\left(\frac{32-8 \sqrt{2}}{3}\right) \text { units }
\end{aligned}
$$

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area of OAB

$$
\begin{aligned}
\text { Area of } \mathrm{OAB} & =\int_{0}^{4} y d x \\
& =\int_{0}^{4} 3 \sqrt{1-\frac{x^{2}}{16}} d x \\
& =\frac{3}{4} \int_{0}^{4} \sqrt{16-x^{2}} d x \\
& =\frac{3}{4}\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{0}^{4} \\
& =\frac{3}{4}\left[2 \sqrt{16-16}+8 \sin ^{-1}(1)-0-8 \sin ^{-1}(0)\right] \\
& =\frac{3}{4}\left[\frac{8 \pi}{2}\right] \\
& =\frac{3}{4}[4 \pi] \\
& =3 \pi
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times 3 \pi=12 \pi$ units

Question 5:

Find the area of the region bounded by the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
Answer
The given equation of the ellipse can be represented as

$\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$
$\Rightarrow y=3 \sqrt{1-\frac{x^{2}}{4}}$
It can be observed that the ellipse is symmetrical about x-axis and y-axis.
\therefore Area bounded by ellipse $=4 \times$ Area $O A B$

$$
\begin{aligned}
\therefore \text { Area of } \mathrm{OAB} & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} 3 \sqrt{1-\frac{x^{2}}{4}} d x \quad[\text { Using (1)] } \\
& =\frac{3}{2} \int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\frac{3}{2}\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-} \frac{x}{2}\right]_{0}^{2} \\
& =\frac{3}{2}\left[\frac{2 \pi}{2}\right] \\
& =\frac{3 \pi}{2}
\end{aligned}
$$

Therefore, area bounded by the ellipse $=4 \times \frac{3 \pi}{2}=6 \pi$ units

Question 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3} y$ and the circle $x^{2}+y^{2}=4$
Answer
The area of the region bounded by the circle, $x^{2}+y^{2}=4, x=\sqrt{3} y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $(\sqrt{3}, 1)$.
Area $O A B=$ Area $\triangle O C A+$ Area $A C B$
Area of $\mathrm{OAC}=\frac{1}{2} \times \mathrm{OC} \times \mathrm{AC}=\frac{1}{2} \times \sqrt{3} \times 1=\frac{\sqrt{3}}{2}$
Area of $\mathrm{ABC}=\int_{\sqrt{3}}^{2} y d x$
$=\int_{\sqrt{3}}^{2} \sqrt{4-x^{2}} d x$
$=\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{\sqrt{3}}^{2}$
$=\left[2 \times \frac{\pi}{2}-\frac{\sqrt{3}}{2} \sqrt{4-3}-2 \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)\right]$
$=\left[\pi-\frac{\sqrt{3} \pi}{2}-2\left(\frac{-}{3}\right)\right]$
$=\left[\pi-\frac{\sqrt{3}}{2}-\frac{2 \pi}{3}\right]$
$=\left[\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right]$
Therefore, area enclosed by x-axis, the line $x=\sqrt{3} y$, and the circle $x^{2}+y^{2}=4$ in the first
quadrant $=\frac{\sqrt{3} \pi}{2}+\frac{3 \sqrt{ }}{3}-\frac{\pi}{2}=\frac{-}{3}$ units

Question 7:

Find the area of the smaller part of the circle $x^{2}+y^{2}=a^{2}$ cut off by the line $x=\frac{a}{\sqrt{2}}$ Answer

The area of the smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the area ABCDA.

It can be observed that the area $A B C D$ is symmetrical about x-axis.
\therefore Area $A B C D=2 \times$ Area $A B C$

$$
\begin{aligned}
\text { Area of } \begin{aligned}
A B C & =\int_{\frac{a}{\sqrt{2}}}^{a} y d x \\
& =\int_{\frac{a}{\sqrt{2}}}^{a} \sqrt{a^{2}-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right]_{\frac{a}{\sqrt{2}}}^{a} \\
& =\left[\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)-\frac{a}{2 \sqrt{2}} \sqrt{a^{2}-\frac{a^{2}}{2}}-\frac{a^{2}}{2} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)\right] \\
& =\frac{a^{2} \pi}{4}-\frac{a}{2 \sqrt{2}} \cdot \frac{a}{\sqrt{2}}-\frac{a^{2}}{2}\left(\frac{\pi}{4}\right) \\
& =\frac{a^{2} \pi}{4}-\frac{a^{2}}{4}-\frac{a^{2} \pi}{8} \\
& =\frac{a^{2}}{4}\left[\pi-1-\frac{\pi}{2}\right] \\
& =\frac{a^{2}}{4}\left[\frac{\pi}{2}-1\right] \\
\Rightarrow \text { Area } A B C D & =2\left[\frac{a^{2}}{4}\left(\frac{\pi}{2}-1\right)\right]=\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)
\end{aligned}
\end{aligned}
$$

Therefore, the area of smaller part of the circle, $x^{2}+y^{2}=a^{2}$, cut off by the line, $x=\frac{a}{\sqrt{2}}$,
is $\frac{a^{2}}{2}\left(\frac{\pi}{2}-1\right)$ units.

Question 8:

The area between $x=y^{2}$ and $x=4$ is divided into two equal parts by the line $x=a$, find the value of a.

Answer

The line, $x=a$, divides the area bounded by the parabola and $x=4$ into two equal parts.
\therefore Area $O A D=$ Area $A B C D$

It can be observed that the given area is symmetrical about x-axis.
\Rightarrow Area OED $=$ Area EFCD

$$
\begin{align*}
\text { Area } \begin{aligned}
O E D & =\int_{0}^{a} y d x \\
& =\int_{0}^{a} \sqrt{x} d x \\
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{a} \\
& =\frac{2}{3}(a)^{\frac{3}{2}}
\end{aligned} .=\frac{1}{}
\end{align*}
$$

Area of EFCD $=\int_{0}^{4} \sqrt{x} d x$

$$
\begin{align*}
& =\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{4} \\
& =\frac{2}{3}\left[8-a^{\frac{3}{2}}\right] \tag{2}
\end{align*}
$$

From (1) and (2), we obtain
$\frac{2}{3}(a)^{\frac{3}{2}}=\frac{2}{3}\left[8-(a)^{\frac{3}{2}}\right]$
$\Rightarrow 2 \cdot(a)^{\frac{3}{2}}=8$
$\Rightarrow(a)^{\frac{3}{2}}=4$
$\Rightarrow a=(4)^{\frac{2}{3}}$
Therefore, the value of a is $(4)^{\frac{2}{3}}$.

Question 9:

Find the area of the region bounded by the parabola $y=x^{2}$ and $y=|x|$
Answer
The area bounded by the parabola, $x^{2}=y$, and the line, $y=|x|$, can be represented as

The given area is symmetrical about y-axis.

\therefore Area $\mathrm{OACO}=$ Area ODBO

The point of intersection of parabola, $x^{2}=y$, and line, $y=x$, is $A(1,1)$.
Area of OACO $=$ Area $\triangle \mathrm{OAB}-$ Area OBACO
\therefore Area of $\triangle \mathrm{OAB}=\frac{1}{2} \times \mathrm{OB} \times \mathrm{AB}=\frac{1}{2} \times 1 \times 1=\frac{1}{2}$
Area of $\mathrm{OBACO}=\int_{0}^{1} y d x=\int_{0}^{1} x^{2} d x=\left[\frac{x^{3}}{3}\right]_{0}^{1}=\frac{1}{3}$
\Rightarrow Area of $\mathrm{OACO}=$ Area of $\triangle \mathrm{OAB}-$ Area of OBACO

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6}
\end{aligned}
$$

Therefore, required area $=2\left[\frac{1}{6}\right]=\frac{1}{3}$ units

Question 10:

Find the area bounded by the curve $x^{2}=4 y$ and the line $x=4 y-2$
Answer
The area bounded by the curve, $x^{2}=4 y$, and line, $x=4 y-2$, is represented by the shaded area OBAO.

Let A and B be the points of intersection of the line and parabola.
Coordinates of point A are $\left(-1, \frac{1}{4}\right)$.
Coordinates of point B are $(2,1)$.
We draw AL and BM perpendicular to x-axis.
It can be observed that,
Area $O B A O=$ Area $O B C O+$ Area OACO
Then, Area $\mathrm{OBCO}=$ Area $\mathrm{OMBC}-$ Area OMBO
$=\int_{0}^{2} \frac{x+2}{4} d x-\int_{0}^{2} \frac{x^{2}}{4} d x$
$=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{0}^{2}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{2}$
$=\frac{1}{4}[2+4]-\frac{1}{4}\left[\frac{8}{3}\right]$
$=\frac{3}{2}-\frac{2}{3}$
$=\frac{5}{6}$
Similarly, Area OACO $=$ Area OLAC - Area OLAO
$=\int_{-1}^{0} \frac{x+2}{4} d x-\int_{-1}^{0} \frac{x^{2}}{4} d x$ $=\frac{1}{4}\left[\frac{x^{2}}{2}+2 x\right]_{-1}^{0}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=-\frac{1}{4}\left[\frac{(-1)^{2}}{2}+2(-1)\right]-\left[-\frac{1}{4}\left(\frac{(-1)^{3}}{3}\right)\right]$
$=-\frac{1}{4}\left[\frac{1}{2}-2\right]-\frac{1}{12}$
$=\frac{1}{2}-\frac{1}{8}-\frac{1}{12}$
$=\frac{7}{24}$

Therefore, required area $=\left(\frac{5}{6}+\frac{7}{24}\right)=\frac{9}{8}$ units

Question 11:

Find the area of the region bounded by the curve $y^{2}=4 x$ and the line $x=3$
Answer
The region bounded by the parabola, $y^{2}=4 x$, and the line, $x=3$, is the area OACO.

The area OACO is symmetrical about x-axis.
\therefore Area of $O A C O=2$ (Area of $O A B$)

$$
\begin{aligned}
\text { Area OACO } & =2\left[\int_{0}^{3} y d x\right] \\
& =2 \int_{0}^{3} 2 \sqrt{x} d x \\
& =4\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{3} \\
& =\frac{8}{3}\left[(3)^{\frac{3}{2}}\right] \\
& =8 \sqrt{3}
\end{aligned}
$$

Therefore, the required area is $8 \sqrt{3}$ units.

Question 12:

Area lying in the first quadrant and bounded by the circle $x^{2}+y^{2}=4$ and the lines $x=0$ and $x=2$ is
A. $п$
B. $\frac{\pi}{2}$
C. $\frac{\pi}{3}$
D. $\frac{\pi}{4}$

Answer
The area bounded by the circle and the lines, $x=0$ and $x=2$, in the first quadrant is represented as

$$
\begin{aligned}
\therefore \text { Area } \mathrm{OAB} & =\int_{0}^{2} y d x \\
& =\int_{0}^{2} \sqrt{4-x^{2}} d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2} \\
& =2\left(\frac{\pi}{2}\right) \\
& =\pi \text { units }
\end{aligned}
$$

Thus, the correct answer is A .

Question 13:

Area of the region bounded by the curve $y^{2}=4 x, y$-axis and the line $y=3$ is
A. 2
B. $\frac{9}{4}$
C. $\frac{9}{3}$
D. $\frac{9}{2}$

Answer
The area bounded by the curve, $y^{2}=4 x, y$-axis, and $y=3$ is represented as

\therefore Area $\mathrm{OAB}=\int_{0}^{3} x d y$
$=\int_{0}^{3} \frac{y^{2}}{4} d y$
$=\frac{1}{4}\left[\frac{y^{3}}{3}\right]_{0}^{3}$
$=\frac{1}{12}(27)$
$=\frac{9}{4}$ units
Thus, the correct answer is B.

Exercise 8.2

Question 1:

Find the area of the circle $4 x^{2}+4 y^{2}=9$ which is interior to the parabola $x^{2}=4 y$
Answer
The required area is represented by the shaded area OBCDO.

Solving the given equation of circle, $4 x^{2}+4 y^{2}=9$, and parabola, $x^{2}=4 y$, we obtain the point of intersection as $\mathrm{B}\left(\sqrt{2}, \frac{1}{2}\right)$ and $\mathrm{D}\left(-\sqrt{2}, \frac{1}{2}\right)$.

It can be observed that the required area is symmetrical about y-axis.
\therefore Area $O B C D O=2 \times$ Area $O B C O$

We draw BM perpendicular to OA.
Therefore, the coordinates of M are $(\sqrt{2}, 0)$.
Therefore, Area $\mathrm{OBCO}=$ Area OMBCO - Area OMBO
$=\int_{0}^{\sqrt{2}} \sqrt{\frac{\left(9-4 x^{2}\right)}{4}} d x-\int_{0}^{\sqrt{2}} \sqrt{\frac{x^{2}}{4}} d x$
$=\frac{1}{2} \int_{0}^{\sqrt{2}} \sqrt{9-4 x^{2}} d x-\frac{1}{4} \int_{0}^{\sqrt{2}} x^{2} d x$
$=\frac{1}{4}\left[x \sqrt{9-4 x^{2}}+\frac{9}{2} \sin ^{-1} \frac{2 x}{3}\right]_{0}^{\sqrt{2}}-\frac{1}{4}\left[\frac{x^{3}}{3}\right]_{0}^{\sqrt{2}}$
$=\frac{1}{4}\left[\sqrt{2} \sqrt{9-8}+\frac{9}{2} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]-\frac{1}{12}(\sqrt{2})^{3}$
$=\frac{\sqrt{2}}{4}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}-\frac{\sqrt{2}}{6}$
$=\frac{\sqrt{2}}{12}+\frac{9}{8} \sin ^{-1} \frac{2 \sqrt{2}}{3}$
$=\frac{1}{2}\left(\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right)$
Therefore, the required area OBCDO is
$\left(2 \times \frac{1}{2}\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]\right)=\left[\frac{\sqrt{2}}{6}+\frac{9}{4} \sin ^{-1} \frac{2 \sqrt{2}}{3}\right]$ units

Question 2:

Find the area bounded by curves $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$
Answer
The area bounded by the curves, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, is represented by the shaded area as

On solving the equations, $(x-1)^{2}+y^{2}=1$ and $x^{2}+y^{2}=1$, we obtain the point of intersection as $A\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ and $B\left(\frac{1}{2},-\frac{\sqrt{3}}{2}\right)$

It can be observed that the required area is symmetrical about x-axis.
\therefore Area OBCAO $=2 \times$ Area OCAO

We join $A B$, which intersects $O C$ at M, such that $A M$ is perpendicular to $O C$.

The coordinates of M are $\left(\frac{1}{2}, 0\right)$.

$$
\begin{aligned}
\Rightarrow \text { Area } O C A O & =\text { Area OMAO + Area MCAM } \\
& =\left[\int_{0}^{\frac{1}{2}} \sqrt{1-(x-1)^{2}} d x+\int_{\frac{1}{2}}^{1} \sqrt{1-x^{2}} d x\right] \\
& =\left[\frac{x-1}{2} \sqrt{1-(x-1)^{2}}+\frac{1}{2} \sin ^{-1}(x-1)\right]_{0}^{\frac{1}{2}}+\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{1}{2} \sin ^{-1} x\right]_{\frac{1}{2}}^{1} \\
& =\left[-\frac{1}{4} \sqrt{1-\left(-\frac{1}{2}\right)^{2}}+\frac{1}{2} \sin ^{-1}\left(\frac{1}{2}-1\right)-\frac{1}{2} \sin ^{-1}(-1)\right]+ \\
& =\left[-\frac{\sqrt{3}}{8}+\frac{1}{2}\left(-\frac{\pi}{6}\right)-\frac{1}{2}\left(-\frac{\pi}{2}\right)\right]+\left[\frac{1}{2}\left(\frac{\pi}{2}\right)-\frac{\sqrt{3}}{8}-\frac{1}{2}\left(\frac{\pi}{6}\right)\right] \\
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{12}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{12}\right] \\
& =\left[-\frac{\sqrt{3}}{4}-\frac{\pi}{6}+\frac{\pi}{2}\right] \\
& =\left[\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right]
\end{aligned}
$$

Therefore, required area ОВСАО $=2 \times\left(\frac{2 \pi}{6}-\frac{\sqrt{3}}{4}\right)=\left(\frac{2 \pi}{3}-\frac{\sqrt{3}}{2}\right)$ units

Question 3:

Find the area of the region bounded by the curves $y=x^{2}+2, y=x, x=0$ and $x=3$
Answer
The area bounded by the curves, $y=x^{2}+2, y=x, x=0$, and $x=3$, is represented by the shaded area OCBAO as

Then, Area OCBAO $=$ Area ODBAO - Area ODCO

$$
\begin{aligned}
& =\int_{0}^{3}\left(x^{2}+2\right) d x-\int_{0}^{3} x d x \\
& =\left[\frac{x^{3}}{3}+2 x\right]_{0}^{3}-\left[\frac{x^{2}}{2}\right]_{0}^{3} \\
& =[9+6]-\left[\frac{9}{2}\right] \\
& =15-\frac{9}{2} \\
& =\frac{21}{2} \text { units }
\end{aligned}
$$

Question 4:

Using integration finds the area of the region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and (3, 2).
Answer
$B L$ and CM are drawn perpendicular to x-axis.
It can be observed in the following figure that,
Area $(\triangle A C B)=\operatorname{Area}(A L B A)+$ Area $(B L M C B)-\operatorname{Area}(A M C A) . . .(1)$

Equation of line segment $A B$ is
$y-0=\frac{3-0}{1+1}(x+1)$
$y=\frac{3}{2}(x+1)$
\therefore Area $($ ALBA $)=\int_{-1}^{1} \frac{3}{2}(x+1) d x=\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}=\frac{3}{2}\left[\frac{1}{2}+1-\frac{1}{2}+1\right]=3$ units
Equation of line segment $B C$ is
$y-3=\frac{2-3}{3-1}(x-1)$
$y=\frac{1}{2}(-x+7)$
\therefore Area $($ BLMCB $)=\int_{1}^{3} \frac{1}{2}(-x+7) d x=\frac{1}{2}\left[-\frac{x^{2}}{2}+7 x\right]_{1}^{3}=\frac{1}{2}\left[-\frac{9}{2}+21+\frac{1}{2}-7\right]=5$ units
Equation of line segment $A C$ is
$y-0=\frac{2-0}{3+1}(x+1)$
$y=\frac{1}{2}(x+1)$
$\therefore \operatorname{Area}(\mathrm{AMCA})=\frac{1}{2} \int_{-1}^{3}(x+1) d x=\frac{1}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{3}=\frac{1}{2}\left[\frac{9}{2}+3-\frac{1}{2}+1\right]=4$ units
Therefore, from equation (1), we obtain

Area $(\triangle A B C)=(3+5-4)=4$ units

Question 5:

Using integration find the area of the triangular region whose sides have the equations y $=2 x+1, y=3 x+1$ and $x=4$.

Answer
The equations of sides of the triangle are $y=2 x+1, y=3 x+1$, and $x=4$.
On solving these equations, we obtain the vertices of triangle as $A(0,1), B(4,13)$, and C $(4,9)$.

It can be observed that,

$$
\begin{aligned}
\text { Area }(\triangle \mathrm{ACB}) & =\text { Area (OLBAO) -Area (OLCAO) } \\
& =\int_{0}^{4}(3 x+1) d x-\int_{0}^{4}(2 x+1) d x \\
& =\left[\frac{3 x^{2}}{2}+x\right]_{0}^{4}-\left[\frac{2 x^{2}}{2}+x\right]_{0}^{4} \\
& =(24+4)-(16+4) \\
& =28-20 \\
& =8 \text { units }
\end{aligned}
$$

Question 6:

Smaller area enclosed by the circle $x^{2}+y^{2}=4$ and the line $x+y=2$ is
A. $2(\square-2)$
B. $n-2$
C. $2 \pi-1$
D. $2(\square+2)$

Answer
The smaller area enclosed by the circle, $x^{2}+y^{2}=4$, and the line, $x+y=2$, is represented by the shaded area ACBA as

It can be observed that,
Area ACBA $=$ Area OACBO - Area $(\triangle O A B)$

$$
\begin{aligned}
& =\int_{0}^{2} \sqrt{4-x^{2}} d x-\int_{0}^{2}(2-x) d x \\
& =\left[\frac{x}{2} \sqrt{4-x^{2}}+\frac{4}{2} \sin ^{-1} \frac{x}{2}\right]_{0}^{2}-\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2} \\
& =\left[2 \cdot \frac{\pi}{2}\right]-[4-2] \\
& =(\pi-2) \text { units }
\end{aligned}
$$

Thus, the correct answer is B.

Question 7:

Area lying between the curve $y^{2}=4 x$ and $y=2 x$ is
A. $\frac{2}{3}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{3}{4}$

Answer
The area lying between the curve, $y^{2}=4 x$ and $y=2 x$, is represented by the shaded area OBAO as

The points of intersection of these curves are $O(0,0)$ and $A(1,2)$.
We draw AC perpendicular to x-axis such that the coordinates of C are $(1,0)$.
\therefore Area OBAO $=$ Area $(\triangle O C A)$ - Area $(O C A B O)$

$$
\begin{aligned}
& =\int_{0}^{1} 2 x d x-\int_{0}^{1} 2 \sqrt{x} d x \\
& =2\left[\frac{x^{2}}{2}\right]_{0}^{1}-2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{1} \\
& =\left|1-\frac{4}{3}\right| \\
& =\left|-\frac{1}{3}\right| \\
& =\frac{1}{3} \text { units }
\end{aligned}
$$

Thus, the correct answer is B.

Miscellaneous Solutions

Question 1:

Find the area under the given curves and given lines:
(i) $y=x^{2}, x=1, x=2$ and x-axis
(ii) $y=x^{4}, x=1, x=5$ and x-axis

Answer
i. The required area is represented by the shaded area ADCBA as

$$
\begin{aligned}
\text { Area ADCBA } & =\int_{1}^{2} y d x \\
& =\int_{1}^{2} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{2} \\
& =\frac{8}{3}-\frac{1}{3} \\
& =\frac{7}{3} \text { units }
\end{aligned}
$$

ii. The required area is represented by the shaded area ADCBA as

Area $\mathrm{ADCBA}=\int_{1}^{5} x^{4} d x$

$$
=\left[\frac{x^{5}}{5}\right]_{1}^{5}
$$

$$
=\frac{(5)^{5}}{5}-\frac{1}{5}
$$

$$
=(5)^{4}-\frac{1}{5}
$$

$$
=625-\frac{1}{5}
$$

$$
=624.8 \text { units }
$$

Question 2:

Find the area between the curves $y=x$ and $y=x^{2}$
Answer
The required area is represented by the shaded area OBAO as

The points of intersection of the curves, $y=x$ and $y=x^{2}$, is $\mathrm{A}(1,1)$.
We draw AC perpendicular to x-axis.

$$
\begin{aligned}
\therefore \text { Area }(\text { OBAO }) & =\text { Area }(\triangle O C A)-\operatorname{Area}(\text { OCABO }) \ldots(1) \\
& =\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x \\
& =\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{1}{2}-\frac{1}{3} \\
& =\frac{1}{6} \text { units }
\end{aligned}
$$

Question 3:

Find the area of the region lying in the first quadrant and bounded by $y=4 x^{2}, x=0, y$
$=1$ and $y=4$

Answer

The area in the first quadrant bounded by $y=4 x^{2}, x=0, y=1$, and $y=4$ is represented by the shaded area $A B C D A$ as

\therefore Area $\mathrm{ABCD}=\int_{1}^{4} x d x$

$$
=\int^{4} \frac{\sqrt{y}}{2} d x
$$

$$
=\frac{1}{2}\left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}}\right]_{1}^{4}
$$

$$
=\frac{1}{3}\left[(4)^{\frac{3}{2}}-1\right]
$$

$$
=\frac{1}{3}[8-1]
$$

$$
=\frac{7}{3} \text { units }
$$

Question 4:

Sketch the graph of $y=|x+3|$ and evaluate $\int_{-6}^{0}|x+3| d x$
Answer

The given equation is $y=|x+3|$
The corresponding values of x and y are given in the following table.

x	-6	-5	-4	-3	-2	-1	0
y	3	2	1	0	1	2	3

On plotting these points, we obtain the graph of $y=|x+3|$ as follows.

It is known that, $(x+3) \leq 0$ for $-6 \leq x \leq-3$ and $(x+3) \geq 0$ for $-3 \leq x \leq 0$

$$
\begin{aligned}
\therefore \int_{-6}^{0}|(x+3)| d x & =-\int_{-6}^{-3}(x+3) d x+\int_{-3}^{0}(x+3) d x \\
& =-\left[\frac{x^{2}}{2}+3 x\right]_{-6}^{-3}+\left[\frac{x^{2}}{2}+3 x\right]_{-3}^{0} \\
& =-\left[\left(\frac{(-3)^{2}}{2}+3(-3)\right)-\left(\frac{(-6)^{2}}{2}+3(-6)\right)\right]+\left[0-\left(\frac{(-3)^{2}}{2}+3(-3)\right]\right. \\
& =-\left[-\frac{9}{2}\right]-\left[-\frac{9}{2}\right] \\
& =9
\end{aligned}
$$

Question 5:

Find the area bounded by the curve $y=\sin x$ between $x=0$ and $x=2 \pi$
Answer
The graph of $y=\sin x$ can be drawn as

\therefore Required area $=$ Area $O A B O+$ Area $B C D B$

$$
\begin{aligned}
& =\int_{0}^{\pi} \sin x d x+\left|\int_{\pi}^{2 \pi} \sin x d x\right| \\
& =[-\cos x]_{0}^{\pi}+\left|[-\cos x]_{\pi}^{2 \pi}\right| \\
& =[-\cos \pi+\cos 0]+|-\cos 2 \pi+\cos \pi| \\
& =1+1+|(-1-1)| \\
& =2+|-2| \\
& =2+2=4 \text { units }
\end{aligned}
$$

Question 6:

Find the area enclosed between the parabola $y^{2}=4 a x$ and the line $y=m x$
Answer
The area enclosed between the parabola, $y^{2}=4 a x$, and the line, $y=m x$, is represented by the shaded area OABO as

The points of intersection of both the curves are $(0,0)$ and $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$. We draw AC perpendicular to x-axis.

$$
\begin{aligned}
\therefore \text { Area OABO } & =\text { Area OCABO - Area }(\Delta \mathrm{OCA}) \\
& =\int_{0}^{\frac{4 a}{m^{2}}} 2 \sqrt{a x} d x-\int_{0}^{\frac{m^{2}}{2}} m x d x \\
& =2 \sqrt{a}\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{4 a}{m^{2}}}-m\left[\frac{x^{2}}{2}\right]_{0}^{\frac{4 a}{m^{2}}} \\
& =\frac{4}{3} \sqrt{a}\left(\frac{4 a}{m^{2}}\right)^{\frac{3}{2}}-\frac{m}{2}\left[\left(\frac{4 a}{m^{2}}\right)^{2}\right] \\
& =\frac{32 a^{2}}{3 m^{3}}-\frac{m}{2}\left(\frac{16 a^{2}}{m^{4}}\right) \\
& =\frac{32 a^{2}}{3 m^{3}}-\frac{8 a^{2}}{m^{3}} \\
& =\frac{8 a^{2}}{3 m^{3}} \text { units }
\end{aligned}
$$

Question 7:

Find the area enclosed by the parabola $4 y=3 x^{2}$ and the line $2 y=3 x+12$
Answer
The area enclosed between the parabola, $4 y=3 x^{2}$, and the line, $2 y=3 x+12$, is represented by the shaded area OBAO as

The points of intersection of the given curves are $A(-2,3)$ and $(4,12)$.
We draw AC and BD perpendicular to x-axis.
\therefore Area $O B A O=$ Area CDBA - (Area ODBO + Area OACO)
$=\int_{-2}^{1} \frac{1}{2}(3 x+12) d x-\int_{-2}^{4} \frac{3 x^{2}}{4} d x$
$=\frac{1}{2}\left[\frac{3 x^{2}}{2}+12 x\right]_{-2}^{4}-\frac{3}{4}\left[\frac{x^{3}}{3}\right]_{-2}^{4}$
$=\frac{1}{2}[24+48-6+24]-\frac{1}{4}[64+8]$
$=\frac{1}{2}[90]-\frac{1}{4}[72]$
$=45-18$
$=27$ units

Question 8:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ and the line $\frac{x}{3}+\frac{y}{2}=1$
Answer
The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, and the line,
$\frac{x}{3}+\frac{y}{2}=1$, is represented by the shaded region $B C A B$ as

\therefore Area $B C A B=$ Area $(O B C A O)-$ Area $(O B A O)$

$$
\begin{aligned}
& =\int_{0}^{3} 2 \sqrt{1-\frac{x^{2}}{9}} d x-\int_{0}^{3} 2\left(1-\frac{x}{3}\right) d x \\
& =\frac{2}{3}\left[\int_{0}^{3} \sqrt{9-x^{2}} d x\right]-\frac{2}{3} \int_{0}^{3}(3-x) d x \\
& =\frac{2}{3}\left[\frac{x}{2} \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}\right]_{0}^{3}-\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{0}^{3} \\
& =\frac{2}{3}\left[\frac{9}{2}\left(\frac{\pi}{2}\right)\right]-\frac{2}{3}\left[9-\frac{9}{2}\right] \\
& =\frac{2}{3}\left[\frac{9 \pi}{4}-\frac{9}{2}\right] \\
& =\frac{2}{3} \times \frac{9}{4}(\pi-2) \\
& =\frac{3}{2}(\pi-2) \text { units }
\end{aligned}
$$

Question 9:

Find the area of the smaller region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the line $\frac{x}{a}+\frac{y}{b}=1$

Answer
The area of the smaller region bounded by the ellipse, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, and the line, $\frac{x}{a}+\frac{y}{b}=1$, is represented by the shaded region BCAB as

\therefore Area $B C A B=$ Area $(O B C A O)$ - Area $(O B A O)$

$$
\begin{aligned}
& =\int_{0}^{a} b \sqrt{1-\frac{x^{2}}{a^{2}}} d x-\int_{0}^{a} b\left(1-\frac{x}{a}\right) d x \\
& =\frac{b}{a} \int_{0}^{a} \sqrt{a^{2}-x^{2}} d x-\frac{b}{a} \int_{0}^{a}(a-x) d x \\
& =\frac{b}{a}\left[\left\{\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}\right\}_{0}^{a}-\left\{a x-\frac{x^{2}}{2}\right\}_{0}^{a}\right] \\
& =\frac{b}{a}\left[\left\{\frac{a^{2}}{2}\left(\frac{\pi}{2}\right)\right\}-\left\{a^{2}-\frac{a^{2}}{2}\right\}\right] \\
& =\frac{b}{a}\left[\frac{a^{2} \pi}{4}-\frac{a^{2}}{2}\right] \\
& =\frac{b a^{2}}{2 a}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{2}\left[\frac{\pi}{2}-1\right] \\
& =\frac{a b}{4}(\pi-2)
\end{aligned}
$$

Question 10:

Find the area of the region enclosed by the parabola $x^{2}=y$, the line $y=x+2$ and x axis

Answer
The area of the region enclosed by the parabola, $x^{2}=y$, the line, $y=x+2$, and x-axis is represented by the shaded region OABCO as

The point of intersection of the parabola, $x^{2}=y$, and the line, $y=x+2$, is $\mathrm{A}(-1,1)$.
\therefore Area $O A B C O=$ Area $(B C A)+$ Area $C O A C$
$=\int_{-2}^{-1}(x+2) d x+\int_{-1}^{0} x^{2} d x$
$=\left[\frac{x^{2}}{2}+2 x\right]_{-2}^{-1}+\left[\frac{x^{3}}{3}\right]_{-1}^{0}$
$=\left[\frac{(-1)^{2}}{2}+2(-1)-\frac{(-2)^{2}}{2}-2(-2)\right]+\left[-\frac{(-1)^{3}}{3}\right]$
$=\left[\frac{1}{2}-2-2+4+\frac{1}{3}\right]$
$=\frac{5}{6}$ units

Question 11:

Using the method of integration find the area bounded by the curve $|x|+|y|=1$
[Hint: the required region is bounded by lines $x+y=1, x-y=1,-x+y=1$ and $-x$ $-y=11]$

Answer

The area bounded by the curve, $|x|+|y|=1$, is represented by the shaded region ADCB as

The curve intersects the axes at points $\mathrm{A}(0,1), \mathrm{B}(1,0), \mathrm{C}(0,-1)$, and $\mathrm{D}(-1,0)$. It can be observed that the given curve is symmetrical about x-axis and y-axis.

$$
\begin{aligned}
\therefore \text { Area ADCB } & =4 \times \text { Area OBAO } \\
& =4 \int_{0}^{1}(1-x) d x \\
& =4\left(x-\frac{x^{2}}{2}\right)_{0}^{1} \\
& =4\left[1-\frac{1}{2}\right] \\
& =4\left(\frac{1}{2}\right) \\
& =2 \text { units }
\end{aligned}
$$

Question 12:

Find the area bounded by curves $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$
Answer
The area bounded by the curves, $\left\{(x, y): y \geq x^{2}\right.$ and $\left.y=|x|\right\}$, is represented by the shaded region as

It can be observed that the required area is symmetrical about y-axis.

$$
\begin{aligned}
\text { Required area } & =2[\text { Area }(\text { OCAO })-\operatorname{Area}(\mathrm{OCADO})] \\
& =2\left[\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x\right] \\
& =2\left[\left[\frac{x^{2}}{2}\right]_{0}^{1}-\left[\frac{x^{3}}{3}\right]_{0}^{1}\right] \\
& =2\left[\frac{1}{2}-\frac{1}{3}\right] \\
& =2\left[\frac{1}{6}\right]=\frac{1}{3} \text { units }
\end{aligned}
$$

Question 13:

Using the method of integration find the area of the triangle $A B C$, coordinates of whose vertices are $A(2,0), B(4,5)$ and $C(6,3)$

Answer

The vertices of $\triangle A B C$ are $A(2,0), B(4,5)$, and $C(6,3)$.

Equation of line segment $A B$ is
$y-0=\frac{5-0}{4-2}(x-2)$
$2 y=5 x-10$
$y=\frac{5}{2}(x-2)$
Equation of line segment $B C$ is
$y-5=\frac{3-5}{6-4}(x-4)$
$2 y-10=-2 x+8$
$2 y=-2 x+18$
$y=-x+9$
Equation of line segment CA is
$y-3=\frac{0-3}{2-6}(x-6)$
$-4 y+12=-3 x+18$
$4 y=3 x-6$
$y=\frac{3}{4}(x-2)$

$$
\begin{aligned}
\text { Area }(\triangle \mathrm{ABC}) & =\text { Area (ABLA) }+ \text { Area (BLMCB) }- \text { Area (ACMA) } \\
& =\int_{2}^{+} \frac{5}{2}(x-2) d x+\int_{4}^{6}(-x+9) d x-\int_{2}^{6} \frac{3}{4}(x-2) d x \\
& =\frac{5}{2}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{4}+\left[\frac{-x^{2}}{2}+9 x\right]_{4}^{6}-\frac{3}{4}\left[\frac{x^{2}}{2}-2 x\right]_{2}^{6} \\
& =\frac{5}{2}[8-8-2+4]+[-18+54+8-36]-\frac{3}{4}[18-12-2+4] \\
& =5+8-\frac{3}{4}(8) \\
& =13-6 \\
& =7 \text { units }
\end{aligned}
$$

Question 14:

Using the method of integration find the area of the region bounded by lines:
$2 x+y=4,3 x-2 y=6$ and $x-3 y+5=0$
Answer
The given equations of lines are

$$
\begin{align*}
& 2 x+y=4 \ldots \text { (1) } \\
& 3 x-2 y=6 \ldots \text { (2) } \tag{2}\\
& \text { And, } x-3 y+5=0 \tag{3}
\end{align*}
$$

The area of the region bounded by the lines is the area of $\triangle A B C$. $A L$ and $C M$ are the perpendiculars on x-axis.

$$
\begin{aligned}
\text { Area (} \triangle \mathrm{ABC}) & =\text { Area (ALMCA) - Area (ALB) - Area (CMB) } \\
& =\int^{+}\left(\frac{x+5}{3}\right) d x-\int_{1}^{2}(4-2 x) d x-\int_{2}^{4}\left(\frac{3 x-6}{2}\right) d x \\
& =\frac{1}{3}\left[\frac{x^{2}}{2}+5 x\right]_{1}^{4}-\left[4 x-x^{2}\right]_{1}^{2}-\frac{1}{2}\left[\frac{3 x^{2}}{2}-6 x\right]_{2}^{4} \\
& =\frac{1}{3}\left[8+20-\frac{1}{2}-5\right]-[8-4-4+1]-\frac{1}{2}[24-24-6+12] \\
& =\left(\frac{1}{3} \times \frac{45}{2}\right)-(1)-\frac{1}{2}(6) \\
& =\frac{15}{2}-1-3 \\
& =\frac{15}{2}-4=\frac{15-8}{2}=\frac{7}{2} \text { units }
\end{aligned}
$$

Question 15:

Find the area of the region $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$
Answer
The area bounded by the curves, $\left\{(x, y): y^{2} \leq 4 x, 4 x^{2}+4 y^{2} \leq 9\right\}$, is represented as

The points of intersection of both the curves are $\left(\frac{1}{2}, \sqrt{2}\right)$ and $\left(\frac{1}{2},-\sqrt{2}\right)$. The required area is given by OABCO.

It can be observed that area OABCO is symmetrical about x-axis.
\therefore Area $\mathrm{OABCO}=2 \times$ Area OBC

$$
\text { Area } \mathrm{OBCO}=\text { Area } \mathrm{OMC}+\text { Area } \mathrm{MBC}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{9-4 x^{2}} d x \\
& =\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\int_{\frac{1}{2}}^{\frac{3}{2}} \frac{1}{2} \sqrt{(3)^{2}-(2 x)^{2}} d x
\end{aligned}
$$

Question 16:

Area bounded by the curve $y=x^{3}$, the x-axis and the ordinates $x=-2$ and $x=1$ is
A. -9
B. $-\frac{15}{4}$
C. $\frac{15}{4}$
D. $\frac{17}{4}$

Answer

Required area $=\int_{-2}^{1} y d x$

Solve it yourself.
The correct option is D.

Question 17:

The area bounded by the curve $y=x|x|, x$-axis and the ordinates $x=-1$ and $x=1$ is given by
[Hint: $y=x^{2}$ if $x>0$ and $y=-x^{2}$ if $x<0$]
A. 0
B. $\frac{1}{3}$
C. $\frac{2}{3}$
D. $\frac{4}{3}$

Answer

Required area $=\int_{-1}^{1} y d x$
$=\int_{-1}^{1} x|x| d x$
$=\int_{-1}^{0} x^{2} d x+\int_{0}^{1} x^{2} d x$
$=\left[\frac{x^{3}}{3}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}\right]_{0}^{1}$
$=-\left(-\frac{1}{3}\right)+\frac{1}{3}$
$=\frac{2}{3}$ units
Thus, the correct answer is C.

Question 18:

The area of the circle $x^{2}+y^{2}=16$ exterior to the parabola $y^{2}=6 x$ is
A. $\frac{4}{3}(4 \pi-\sqrt{3})$
B. $\frac{4}{3}(4 \pi+\sqrt{3})$
C. $\frac{4}{3}(8 \pi-\sqrt{3})$
D. $\frac{4}{3}(4 \pi+\sqrt{3})$

Answer

The given equations are

$$
x^{2}+y^{2}=16 \ldots(1)
$$

$$
y^{2}=6 x \ldots
$$

Area bounded by the circle and parabola

$$
\begin{aligned}
& =2[\operatorname{Area}(\mathrm{OADO})+\operatorname{Area}(\mathrm{ADBA})] \\
& =2\left[\int_{0}^{2} \sqrt{16 x} d x+\int_{2}^{4} \sqrt{16-x^{2}} d x\right] \\
& =2\left[\sqrt{6}\left\{\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{2}\right]^{2}+2\left[\frac{x}{2} \sqrt{16-x^{2}}+\frac{16}{2} \sin ^{-1} \frac{x}{4}\right]_{2}^{4} \\
& =2 \sqrt{6} \times \frac{2}{3}\left[x^{\frac{3}{2}}\right]_{0}^{2}+2\left[8 \cdot \frac{\pi}{2}-\sqrt{16-4}-8 \sin ^{-1}\left(\frac{1}{2}\right)\right] \\
& =\frac{4 \sqrt{6}}{3}(2 \sqrt{2})+2\left[4 \pi-\sqrt{12}-8 \frac{\pi}{6}\right] \\
& =\frac{16 \sqrt{3}}{3}+8 \pi-4 \sqrt{3}-\frac{8}{3} \pi \\
& =\frac{4}{3}[4 \sqrt{3}+6 \pi-3 \sqrt{3}-2 \pi] \\
& =\frac{4}{3}[\sqrt{3}+4 \pi] \\
& =\frac{4}{3}[4 \pi+\sqrt{3}] \text { units }
\end{aligned}
$$

Area of circle $=\pi(r)^{2}$
$=n(4)^{2}$
$=16 \mathrm{~m}$ units
\therefore Required area $=16 \pi-\frac{4}{3}[4 \pi+\sqrt{3}]$

$$
\begin{aligned}
& =\frac{4}{3}[4 \times 3 \pi-4 \pi-\sqrt{3}] \\
& =\frac{4}{3}(8 \pi-\sqrt{3}) \text { units }
\end{aligned}
$$

Thus, the correct answer is C.

Question 19:

The area bounded by the y-axis, $y=\cos x$ and $y=\sin x$ when $0 \leq x \leq \frac{\pi}{2}$
A. $2(\sqrt{2}-1)$
B. $\sqrt{2}-1$
C. $\sqrt{2}+1$
D. $\sqrt{2}$

Answer
The given equations are
$y=\cos x \ldots$ (1)
And, $y=\sin x \ldots$ (2)

Required area $=$ Area $(A B L A)+$ area $(O B L O)$

$$
\begin{aligned}
& =\int_{\frac{1}{\sqrt{2}}}^{1} x d y+\int_{0}^{\frac{1}{2}} x d y \\
& =\int_{\frac{1}{2}}^{1} \cos ^{-1} y d y+\int_{0}^{\frac{1}{2}} \sin ^{-1} x d y
\end{aligned}
$$

Integrating by parts, we obtain

$$
\begin{aligned}
& =\left[y \cos ^{-1} y-\sqrt{1-y^{2}}\right]_{\frac{1}{\sqrt{2}}}^{1}+\left[x \sin ^{-1} x+\sqrt{1-x^{2}}\right]_{0}^{\frac{1}{\sqrt{2}}} \\
& =\left[\cos ^{-1}(1)-\frac{1}{\sqrt{2}} \cos ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}\right]+\left[\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)+\sqrt{1-\frac{1}{2}}-1\right] \\
& =\frac{-\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}+\frac{\pi}{4 \sqrt{2}}+\frac{1}{\sqrt{2}}-1 \\
& =\frac{2}{\sqrt{2}}-1 \\
& =\sqrt{2}-1 \text { units }
\end{aligned}
$$

Thus, the correct answer is B.
Put $2 x=t \Rightarrow d x=\frac{d t}{2}$
When $x=\frac{3}{2}, t=3$ and when $x=\frac{1}{2}, t=1$
$=\int_{0}^{\frac{1}{2}} 2 \sqrt{x} d x+\frac{1}{4} \int_{1}^{3} \sqrt{(3)^{2}-(t)^{2}} d t$
$=2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{0}^{\frac{1}{2}}+\frac{1}{4}\left[\frac{t}{2} \sqrt{9-t^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{t}{3}\right)\right]_{1}^{3}$
$=2\left[\frac{2}{3}\left(\frac{1}{2}\right)^{\frac{3}{2}}\right]+\frac{1}{4}\left[\left\{\frac{3}{2} \sqrt{9-(3)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{3}{3}\right)\right\}-\left\{\frac{1}{2} \sqrt{9-(1)^{2}}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right]$
$=\frac{2}{3 \sqrt{2}}+\frac{1}{4}\left[\left\{0+\frac{9}{2} \sin ^{-1}(1)\right\}-\left\{\frac{1}{2} \sqrt{8}+\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right\}\right]$
$=\frac{\sqrt{2}}{3}+\frac{1}{4}\left[\frac{9 \pi}{4}-\sqrt{2}-\frac{9}{2} \sin ^{-1}\left(\frac{1}{3}\right)\right]$
$=\frac{\sqrt{2}}{3}+\frac{9 \pi}{16}-\frac{\sqrt{2}}{4}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)$
$=\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}$
Therefore, the required area is $\left[2 \times\left(\frac{9 \pi}{16}-\frac{9}{8} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{\sqrt{2}}{12}\right)\right]=\frac{9 \pi}{8}-\frac{9}{4} \sin ^{-1}\left(\frac{1}{3}\right)+\frac{1}{3 \sqrt{2}}$ units

