## PREBOARD EXAMINATION 2023-24

## CLASS: XII

SUBJECT: PHYSICS (SET1)

TIME: 3 HRS

M.M: 70

No. of pages:7

General Instructions:
(1) There are 33 questions in all. All questions are compulsory.

(2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.

(3) All the sections are compulsory.

(4) Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1 mark each, Section B contains five questions of two marks each,

Section C contains seven questions of three marks each,

Section D contains two case study based questions of four marks each and

Section E contains three long answer questions of five marks each.

(5) There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.

(6) Use of calculators is not allowed.

(7) You may use the following values of physical constants where ever necessary

i. 
$$c = 3 \times 10^8 \text{ m/s}$$
  
ii.  $m_e = 9.1 \times 10^{-31} \text{ kg}$   
iii.  $e = 1.6 \times 10^{-19} \text{ C}$   
iv.  $\mu_0 = 4\pi \times 10^{-7} \text{ Tm} A^{-1}$   
v.  $h = 6.63 \times 10^{-34} \text{ Js}$ 

vi.  $\varepsilon_0 = 8.854 \times 10^{-12} C^2 N^{-1} m^{-2}$ 

vii. Avogadro's number = 6.023 X 10<sup>23</sup> per gram mole

| Q.<br>NO. | SECTION – A                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| V/        | The potential at a point x (m) is due to some charge situated on the X axis is given by $V(x) = 6(x^3+2)$ volt. What will be electric field at $x=2m$ ?  (a) 10 V/m  (b) 15 V/m  (c) 30 V/m  (d) 42 V/m                                                                                                                                                                                                                                                       | 1 |
| 2         | The total flux through the faces of the cube with side of length a if a charge q is placed centre of a face of the cube  (a) $q/8\epsilon_0$ (b) $q/4\epsilon_0$ (c) $q/2\epsilon_0$ (d) $q/\epsilon_0$                                                                                                                                                                                                                                                       | 1 |
| 3         | Two concentric circular loops of radii a and b. Currents flowing in them I, anticlock wise and clockwise respectively. If a < b, the resultant magnetic field at the centre of circular loops:  (a) $\frac{\mu o}{4\pi} 2\pi l \left[ \frac{1}{a} - \frac{1}{b} \right]$ outward  (b) $\frac{\mu o}{4\pi} 2\pi l \left[ \frac{1}{b} + \frac{1}{a} \right]$ outward  (c) $\frac{\mu o}{4\pi} 2\pi l \left[ \frac{1}{b} - \frac{1}{a} \right]$ Inward  (d) zero | 1 |
| 4         | An electron is projected with uniform velocity along the axis of a current carrying long solenoid. Which of the following is true?  (a) The electron will be accelerated along the axis.  (b) The electron path will be circular about the axis.  (c) The electron will experience a force at 45° to the axis and hence execute a helical path.  (d) The electron will continue to move with uniform velocity along the axis of the solenoid.                 | 1 |

| /      | wentibility                                                                                                                                                                                                                                                                                          | 1  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 18     | Which of the following material has negative susceptibility  (a) Paramagnetic  (b) Ferromagnetic  (c) Diamagnetic  (d) AlNiCo  (e) Alnico  (d) Alnico  (e) Alnico  (e) Diamagnetic                                                                                                                   | 1  |
|        | (a) Paramagnetic (b) Ferromagnetic (c) Diamagnetic field midway between them is                                                                                                                                                                                                                      | 1  |
| 6      | (a) Paramagnetic (b) Ferromagnetic (c) Diamagnetic (d) AB and CD are long parallel wires placed 10 cm apart. Magnetic field midway between them is                                                                                                                                                   |    |
|        |                                                                                                                                                                                                                                                                                                      |    |
|        | (a) $4X10^{-6}T$ (b) $2X10^{-6}T$ (c) $1X10^{-6}T$ (d) $6X10^{-6}T$                                                                                                                                                                                                                                  |    |
| 7      | A magnetic dipole moment                                                                                                                                                                                                                                                                             | 1  |
| -      | (a) is directed from S pole to N pole (b) is directed from N pole to S pole                                                                                                                                                                                                                          |    |
|        | (c) doesn't have any fixed direction (d) is a scalar quantity                                                                                                                                                                                                                                        |    |
| 8      | The output of a step-down transformer is measured to be 24 V when connected to a 12 watt light                                                                                                                                                                                                       | 1  |
| ,      | bulb. The value of the peak current is                                                                                                                                                                                                                                                               |    |
| 1      | (a) $1/\sqrt{2} A$ . (b) $\sqrt{2} A$ . (c) $2 A$ . (d) $2\sqrt{2} A$ .                                                                                                                                                                                                                              |    |
| 15     | A plane wavefront is incident on a concave mirror. The reflected wavefront will be  (a) Plane (b) Cylindrical (c) Spherical (d)Irregular shape                                                                                                                                                       | 1  |
| 10     | A proton, a neutron, an electron and an α-particle have same energy. Then their de Broglie                                                                                                                                                                                                           | 1  |
| V      | wavelengths compare as                                                                                                                                                                                                                                                                               |    |
|        | (a) $\lambda_p = \lambda_n > \lambda_e > \lambda_\alpha$ (b) $\lambda_\alpha < \lambda_p = \lambda_n < \lambda_e$                                                                                                                                                                                    |    |
|        | (a) $\lambda_p = \lambda_n > \lambda_e > \lambda_\alpha$<br>(b) $\lambda_\alpha < \lambda_p = \lambda_n < \lambda_e$<br>(c) $\lambda_e < \lambda_p = \lambda_n > \lambda_\alpha$<br>(d) $\lambda_e = \lambda_p = \lambda_n = \lambda_\alpha$                                                         |    |
| 11     | Taking the Bohr radius as $a_0 = 53$ pm, the radius of Hydrogen atom in its Fire excitation state,                                                                                                                                                                                                   | 1  |
|        | on the basis of Bohr's model, will be about                                                                                                                                                                                                                                                          |    |
|        | (a) 53 pm (b) 27 pm (c)212 pm (d)277 pm                                                                                                                                                                                                                                                              |    |
| 12     | Which of the hydrogen line spectrum series belongs to Ultraviolet region of electromagnetic                                                                                                                                                                                                          | 1  |
|        | spectrum<br>(a) Dalamaraian                                                                                                                                                                                                                                                                          |    |
|        | (a) Balmer series (b) Lyman Series (c) Paschen series (d) Brackett                                                                                                                                                                                                                                   |    |
|        | scres                                                                                                                                                                                                                                                                                                |    |
| Direct | tions for Q13 to Q16:                                                                                                                                                                                                                                                                                |    |
|        | following questions, a statement of assertion is followed by a statement of reason, Mark the                                                                                                                                                                                                         |    |
| corre  | et choice as:                                                                                                                                                                                                                                                                                        |    |
|        |                                                                                                                                                                                                                                                                                                      |    |
| R      | If both assertion and reason are true and reason is the correct explanation of the assertion.                                                                                                                                                                                                        |    |
| C)     | If both assertion and reason are true but reason is not correct explanation of assertion.                                                                                                                                                                                                            |    |
|        | If assertion is true, but reason is false.                                                                                                                                                                                                                                                           |    |
|        | If both assertion and reason are false.                                                                                                                                                                                                                                                              |    |
| 13     | Assertion: In electrostatic field, a charged particle is moving from point P to point Q. The net work done is independent of the path connecting points P and Q.  Reason: The net work done by a conservative force in moving an object is a idependent on path and along a closed loop is not zero. | 1  |
| 14.    | Assertion: The focal length of an equi-convex lens of radius of curvature R made of material of                                                                                                                                                                                                      | 1- |
|        | Terractive index $\mu = 1.5$ , is equal to 2R.                                                                                                                                                                                                                                                       | 1  |
|        | Reason: The radius of curvature of both the surfaces of equi-convex lens is positive.                                                                                                                                                                                                                |    |
|        | · Postavor                                                                                                                                                                                                                                                                                           |    |

|     | ·u.lin mora                                                                                                                 | 1 |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---|
| 15  | Assertion: On increasing the intensity of light, the number of photoelectrons emitted is more.                              | • |
|     | Also the kinetic energy of each photon increases but the photoelecule culture is committed                                  |   |
|     | Reason: Photoelectric current is independent of intensity but increases with increases                                      |   |
| 1 1 | Common of incident mediation                                                                                                | 1 |
| 16  | Assertion: The energy gap between the valence band and conduction band is greater in silicon                                |   |
| 1 1 | than in permanium                                                                                                           |   |
|     | Reason: Thermal energy produces fewer majority carriers in silicon than in germanium.                                       |   |
|     | SECTION – B                                                                                                                 |   |
| 17  | Graph showing the variation of current versus voltage for a material GaAs as shown in figure.                               | 2 |
| V.  | Identify the region · .                                                                                                     | 2 |
|     | (i) of Negative resistance                                                                                                  |   |
|     | (ii) Where Ohm's law is obeyed.                                                                                             |   |
|     | $\delta 1$                                                                                                                  |   |
|     | Also justify your answer.                                                                                                   |   |
|     | Voltage V                                                                                                                   |   |
|     | least apprielly in contact with a concave lens of focal                                                                     | 2 |
| 18  | A convex lens of focal length 25 cm is placed coaxially in contact with a concave lens of focal                             |   |
|     | length 10 cm. Determine the power of the combination. Will the system be converging or                                      |   |
|     | diverging in nature?                                                                                                        |   |
|     | OR                                                                                                                          |   |
|     | Ray of light passing through an equilateral triangular glass prism from air undergoes minimum                               |   |
| 1   | deviation when angle of incidence is $3/2$ the angle of prism. Calculate the speed of light in                              |   |
|     | the prism.                                                                                                                  |   |
| /   |                                                                                                                             |   |
| 19  | Draw a schematic ray diagram of an compound microscope showing how rays coming from an                                      | 2 |
| V . | object are received at the eye piece for normal view. Write its magnification expression.                                   |   |
| 1   |                                                                                                                             |   |
| 20  | Write two important features of Rutherford's planetary model? Write two reasons for its                                     | 2 |
| 0   | rejection.                                                                                                                  |   |
| /   |                                                                                                                             |   |
| 21. | Explain formation of potential barrier in p-n junction diode? Explain how the depletion layer                               | 2 |
|     | changes in forward and reverse bias.                                                                                        |   |
|     | SECTION - C                                                                                                                 |   |
| 22  | State Gauss theorem. Find the relation for electric field intensity at a point due to an infinitely                         | 3 |
| ~   | large thin charged plate.                                                                                                   |   |
| 23  | Define electromotive force for a cell. How is it different from potential                                                   | 3 |
|     | difference? The internal resistance of a cell of emf 2 V is 0.1 Ω. It is connected                                          |   |
|     | to a resistance of 3.9 $\Omega$ . Find the potential difference of cell?                                                    | 1 |
|     | Or                                                                                                                          |   |
|     | Use Kirchhoff's rules to find the currents I <sub>1</sub> , I <sub>2</sub> and I <sub>3</sub> in the circuit diagram shown. |   |
|     |                                                                                                                             |   |
| 1   | $I_1 \qquad E_1 = 2  \mathbf{V}  r_1 = 4  \mathbf{\Omega}$                                                                  |   |
|     | A                                                                                                                           |   |
|     | $F_{\alpha}=1V_{\alpha}=2\Omega_{\alpha}$                                                                                   |   |
|     | $\begin{bmatrix} 1_2 & 1_2 & 1_2 & 1_2 & \dots & 1_n \\ 1_2 & 1_1 & \dots & \dots & \dots & \dots \end{bmatrix}$            |   |
|     |                                                                                                                             |   |
| 1   | $E_3 = 4V$ $E_5 = 20$                                                                                                       |   |
|     | c 3 1 2 2 2 2 D                                                                                                             |   |
|     |                                                                                                                             |   |

|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1939 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|      | In a moving coil galvanometer.  (i) What is the function of radial magnetic field and how is it produced in a moving coil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V    |
| 24   | (i) What is the function of radial magnetic field and how is it produce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1    |
|      | (1) What is the function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *    |
|      | garvanometer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| - ×. | (iii) Define current sensitivity. How can it be increased?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|      | (iii) Define current schsittvity. How can it be in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3    |
|      | Two concentric circular coils, one of small radius $r_1$ and the other of large radius $r_2$ such that  Two concentric circular coils, one of small radius $r_1$ and the other of large radius $r_2$ such that $r_1 = r_2 = r_3 = r_4 = r_2 = r_3 = r_4 = $  |      |
| 25/  | Two concentric circular coils, one of small radius $r_1$ and the other of range $r_2$ are placed co-axially with centres coinciding. Obtain the mutual inductance of the $r_1 \ll r_2$ are placed co-axially with centres coinciding. Obtain the mutual inductance between a pair of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|      | $r_1 \ll r_2$ are placed co-axially with centres conficient of mutual inductance between a pair of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
| W    | arrangement. Give two factors on which the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |
| 1    | cons depends.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| l    | Or,  Define self-inductance of a coil. A long solenoid has 500 turns. When current of 2A flows  the propertie flow linked with each turn of the solenoid 4x10 <sup>-3</sup> Wb. Find the self-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| 1    | Define self-inductance of a coil. A long solenoid has 500 turns. Wb. Find the self-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| 1    | through it, the magnetic flux linked with each turn of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|      | Inductance of the solehold.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3    |
| 26   | Which constituent radiations of electromagnetic spectrum is used -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|      | (i) in RADAR systems used in aircraft navigation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|      | (ii) in photographs of internal parts of human body/as a diagnostic tool in medicine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      |
|      | (iii) for taking photographs of sky, during night and fog conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | Give reason for your answer in each case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3    |
| 27   | The following graph shows the variation of stopping potential X Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| 1    | $(V_0)$ with frequency $(\nu)$ of the incident radiation for two                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|      | photosensitive surfaces X and Y. $V_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|      | (i) Which of the metals has larger threshold wavelength? Give                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|      | reason.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|      | (ii) Explain giving reason, which metal gives out electrons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|      | having larger kinetic energy, for the same wavelength of incident  0.5 1.0 (x 10 <sup>15</sup> 5 <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|      | radiation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | (iii) If the distance between the light source and metal X is halved, how will the kinetic energy of emitted from it change? Give reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|      | oxemitted from it change. Give reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| 28   | (a)Draw a plot of binding energy per nucleon (B.E/A) as a function of mass number A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -    |
| 20   | Write any two important features of this graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3    |
|      | (b) Hea this graph to avaloin the release of annual in health and the second in health and the s |      |
|      | (b) Use this graph to explain the release of energy in both the processes of nuclear fission and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      |
|      | fusion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
| •    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | SECTION - D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| 29   | Refraction is the phenomenon of change in the path of light while going from one medium to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|      | another. This change in path occurs at the boundary of two media. Refraction is caused due to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
|      | change in the speed of light while going from one medium to other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |
|      | $n_1$ $n_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      | ・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
|      | M A R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| •    | Refraction of a section of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|      | Refraction at a spherical surface separating two media.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |

| 1     | while considering the refraction at spherical surfaces, we assume:                                                                        |                                                  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
|       | (1) The object taken here is point sized and is lying on the principal axis of the spherical                                              |                                                  |
| 1     | refracting surface.                                                                                                                       |                                                  |
|       | (ii) The aperture of the spherical refracting surface is small.                                                                           |                                                  |
|       | (iii) The incident and the refracted rays make small angles with the principal axis of the                                                |                                                  |
| .     | spherical surface so that $sin i \approx i$ and $sin r \approx r$                                                                         |                                                  |
|       | Due to refraction, many such phenomena occur in nature, like the twinkling of stars, advanced                                             |                                                  |
| 1     |                                                                                                                                           | - 1                                              |
| 1     | sunrise, delayed sunset, etc. The fact that lenses can converge or diverge rays of light passing                                          | l                                                |
| - 1   | through them is due to the phenomenon of refraction. Due to refraction, we see a pencil broken                                            |                                                  |
|       | when dipped in a beaker filled with water. If we look around, we can spot many such                                                       | 1                                                |
|       | occurrences due to refraction.                                                                                                            |                                                  |
| 29(a) | In the above diagram if the value of angle 'i' and 'r' are $45^{\circ}$ and $30^{\circ}$ , then refractive index of                       | 1                                                |
|       | first medium with respect to second medium.                                                                                               |                                                  |
|       | - 3 1                                                                                                                                     |                                                  |
|       | (i) $\sqrt{2}$ (ii) $\frac{\sqrt{3}}{2}$ (iv) $\frac{5}{2}$                                                                               |                                                  |
|       | Or                                                                                                                                        |                                                  |
| •     | For a plano-concave lens of radius of curvature 10 cm the focal length in air is 25 cm. The                                               |                                                  |
|       | refractive index of the material of the lens is                                                                                           |                                                  |
|       | (i) 2.0 (ii) 1.33 (iv) 1.5                                                                                                                |                                                  |
| 7     | (1) 2.10                                                                                                                                  |                                                  |
|       |                                                                                                                                           |                                                  |
| 29(b) | Focal length of an equi-convex lens of glass(refractive index 1.5) in air is 20 cm. Which of the                                          | 1                                                |
| 29(0) | 1                                                                                                                                         |                                                  |
| 1     | following is correct                                                                                                                      |                                                  |
| 1     | <ol> <li>When immersed in water its power increases.</li> <li>When immersed in oil of refractive index 1.6 its nature changes.</li> </ol> |                                                  |
|       | 3. When immersed in oil of feffactive index 1.5 its power becomes zero.                                                                   |                                                  |
|       | 3. When immersed in glycerin (refractive index 1.5) its power occomes zero.                                                               |                                                  |
|       | 4. When immersed in oil of refractive index 1.6 it will always form a real image.  (i) 1 and 2 (ii) 2 and 3 (iii) 3 and 1 (iv) 1 and 4    |                                                  |
|       | (i) 1 and 2 (ii) 2 and 3 (iii) 3 and 1 (iv) 1 and 4                                                                                       |                                                  |
|       |                                                                                                                                           | 1                                                |
| 29(c) | Light from a point source in air falls on a spherical glass surface ( $n = 1.5$ and radius of                                             | •                                                |
|       | curvature = 20 cm). The distance of the light source from the glass surface is 100 cm. At what                                            |                                                  |
|       | position the image is formed?                                                                                                             |                                                  |
| '     | (i) -100 cm (ii) + 100 cm (iii) + 10 cm (iv) -10 cm                                                                                       |                                                  |
|       |                                                                                                                                           | 1                                                |
| 29(d) | The radii of curvature of the faces of a double convex lens are 10 cm and 15 cm. If focal                                                 | ١.                                               |
| ✓.    |                                                                                                                                           |                                                  |
| ١.    | length is 12 cm, then refractive index of glass is                                                                                        |                                                  |
|       | (iii) 2.0 (iv) 2.52                                                                                                                       |                                                  |
|       | 1 ( 1 ) 1 ) 1   1   1   1   1   1   1   1                                                                                                 | <del>                                     </del> |
| 30    | Consider a thin p-type silicon (p-Si) semiconductor wafer. By adding precisely, a small quantity                                          |                                                  |
|       | of pentavalent impurity, part of the p-Si wafer can be converted into n-Si. There are several                                             | Ì                                                |
|       | processes by which a semiconductor can be formed. The wafer now contains p-region and n-                                                  |                                                  |
|       | region and a metallurgical junction between p-, and n- region. Two important processes occur                                              |                                                  |
|       | region and a metallurgical junction between p-, and it logion. The larger that in an actual                                               |                                                  |
| i     | during the formation of a p-n junction: diffusion and drift. We know that in an n-type                                                    |                                                  |
| 1     | comiconductor, the concentration of electrons (number of electrons per unit volume) is more                                               | 1                                                |
|       | compared to the concentration of holes. Similarly, in a p-type semiconductor, the concentration                                           |                                                  |
|       | compared to the concentration of notes. Similarly, in a proper the formation of non junction and                                          |                                                  |
|       | of holes is more than the concentration of electrons. During the formation of p-n junction, and                                           |                                                  |
|       | due to the concentration gradient across p- and n- sides, holes diffuse from p-side to n-side (p                                          | 1                                                |
|       | n) and electrons diffuse from n-side to p-side ( $n \rightarrow p$ ). This motion of charge carries gives rise to                         |                                                  |
|       | n) and electrons diffuse from n-side to p-side (n - / p).                                                                                 |                                                  |
| 1     | diffusion current across the junction.                                                                                                    |                                                  |
|       | •                                                                                                                                         |                                                  |

Scanned with OKEN Scanner

|       | The due to                                                                                                                                                                                                                                                                     | 4.4 |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2013  | The drift current is set up during formation of p-n junction in a diode due to -                                                                                                                                                                                               | 16  |
| 30(a) | (i)movement of electrons from N side to P side  (ii) movement of electrons from P side to N side and of holes from N side to P side  (iii) Only(i)                                                                                                                             | 1   |
|       | (ii) movement of electrons from P side to N side and of holes from IV side to I                                                                                                                                                                                                |     |
|       | (III) Omy(1)                                                                                                                                                                                                                                                                   |     |
|       | (iv) both (i) and (ii)                                                                                                                                                                                                                                                         | 1   |
| 30(b) | Due to diffusion of majority charge carriers                                                                                                                                                                                                                                   |     |
|       | (i) region of negative immovable ions is formed on p side                                                                                                                                                                                                                      |     |
|       | (ii) a positive space charge region is formed on p side<br>(iii) an electric field is set up across p-n junction from p-side to n-side                                                                                                                                         |     |
|       | (iv) a negative space charge region is formed on n side                                                                                                                                                                                                                        |     |
| 1.0   |                                                                                                                                                                                                                                                                                | ,   |
| 30(c) | In a pure Si crystal Indium is added as dopant. Which of the following is not true about the new                                                                                                                                                                               | 1   |
| 30(0) | crystal formed                                                                                                                                                                                                                                                                 |     |
|       | (i) It becomes p-type extrinsic semiconductor                                                                                                                                                                                                                                  |     |
|       | (ii) Majority charge carriers are holes                                                                                                                                                                                                                                        |     |
|       | (iii) Dopant atom becomes a positive ion                                                                                                                                                                                                                                       |     |
| 2241  | (iv) An acceptor level is created in forbidden energy gap.  On the second of 1.5×10 <sup>16</sup> /m <sup>3</sup> Doning by                                                                                                                                                    | 1   |
| 30(d) | Pure Silicon at 300 K has equal electron and hole concentrations of $1.5 \times 10^{16}$ /m <sup>3</sup> . Doping by Indium increases the hole concentration to $4.5 \times 10^{22}$ / m <sup>3</sup> . Calculate the new electron                                             | •   |
|       | Indium increases the note concentration to 4.5 × 10 / III. Calculate and an appropriate in the depend cilicon                                                                                                                                                                  |     |
|       | concentration in the doped silicon.  Or,                                                                                                                                                                                                                                       |     |
|       | A diode is fabricated from a semiconductor with a band gap of 2.8 eV. Can it detect a wave of                                                                                                                                                                                  |     |
|       | frequency 5X10 <sup>14</sup> Hz.                                                                                                                                                                                                                                               |     |
|       |                                                                                                                                                                                                                                                                                |     |
|       | SECTION – E                                                                                                                                                                                                                                                                    |     |
| 31    | (a) Define electric dipole. Derive an expression for the electric field on the axial line due to an                                                                                                                                                                            | 5   |
|       | electric dipole.                                                                                                                                                                                                                                                               |     |
|       | (b) An electric dipole of length 4cm, when placed with its axis making an angle of 60° with a                                                                                                                                                                                  |     |
|       | uniform electric field, experiences a torque of 4√3 Nm. Calculate the potential energy of the                                                                                                                                                                                  |     |
|       | dipole, if it has a charge of $\pm 8nC$ .                                                                                                                                                                                                                                      |     |
|       | Or,                                                                                                                                                                                                                                                                            |     |
|       | (a) A capacitor of capacity C is charged fully by connecting it to a battery of emf E. It is then                                                                                                                                                                              |     |
|       | disconnected from the battery. If the separation between the plates of the capacitor is doubled                                                                                                                                                                                |     |
|       | then how the following parameters will change: -                                                                                                                                                                                                                               |     |
|       | i) Charge stored in the capacitor                                                                                                                                                                                                                                              |     |
| 1     | ii) Field strength between the plates                                                                                                                                                                                                                                          |     |
|       |                                                                                                                                                                                                                                                                                |     |
|       | iii) Energy stored by the capacitor                                                                                                                                                                                                                                            |     |
|       | (b) Two small conducting spherical balls A and B of radii $r_1$ and $r_2$ have charges $q_1$ and $q_2$                                                                                                                                                                         |     |
| . 1   | respectively. They are connected by a conducting wire. Obtain the expression for charges on A                                                                                                                                                                                  |     |
|       | and B in equilibrium.                                                                                                                                                                                                                                                          |     |
| 32    | (a) An ac source of voltage $V = V_0 \sin \omega t$ is connected to a series combination of L, C and R.                                                                                                                                                                        | 5   |
|       | Use the phasor diagram to obtain the expressions for impedance of the circuit and phase angle                                                                                                                                                                                  |     |
|       |                                                                                                                                                                                                                                                                                | 1   |
|       | between voltage and current. Show the graphical variation of impedance with frequency. What                                                                                                                                                                                    | 1   |
|       | between voltage and current. Show the graphical variation of impedance with frequency. What is minimum impedance? What is the circuit in this condition called?                                                                                                                |     |
|       | is minimum impedance? What is the circuit in this condition called?                                                                                                                                                                                                            |     |
|       | is minimum impedance? What is the circuit in this condition called?<br>b) In a series LR circuit, $X_L = R$ and power factor of the circuit is $P_1$ . When capacitor with                                                                                                     |     |
|       | is minimum impedance? What is the circuit in this condition called?<br>b) In a series LR circuit, $X_L = R$ and power factor of the circuit is $P_1$ . When capacitor with capacitance C is connected in series to LR such that $X_L = X_C$ , the power factor becomes $P_2$ . |     |
|       | is minimum impedance? What is the circuit in this condition called?<br>b) In a series LR circuit, $X_L = R$ and power factor of the circuit is $P_1$ . When capacitor with                                                                                                     |     |

|    | (a) State the working principle an AC generator. With the help of a neat and labelled diagram, explain its working obtain the expression for the emf generated in the coil.  (b) A circular ring of radius R meter lies in X-Y plane in a region where the magnetic field is given by $B = B_0(\hat{\imath} - 2\hat{\jmath} + 4\hat{k})$ tesla where $B_0$ is constant. Find the magnetic flux passing through the ring. |   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 33 | (a) Define interference. What is the need for coherent sources and how are they obtained in Young's double slit experiment? Also write the conditions for constructive and destructive                                                                                                                                                                                                                                   | 3 |
|    | Young's double slit experiment? Also write an interference in terms of the phase angle $\phi$ .  (b) Two harmonic waves of monochromatic light $y_1 = a \cos \omega t$ and $y_2 = a \cos(\omega t + \phi)$ , are superimposed on each other. Show that the maximum intensity in interference pattern is four                                                                                                             |   |
|    | times the intensity due to each sit.                                                                                                                                                                                                                                                                                                                                                                                     |   |
|    | (a) A plane wavefront is incident at the interface of the two media when it propagates from a rarer to a denser medium. Using Huygens's principle construct refracted wavefront and hence                                                                                                                                                                                                                                |   |
|    | verify Snell's law.  (b) With the help of a diagram show the shape of a wavefront emerging from a convex lens                                                                                                                                                                                                                                                                                                            |   |
|    | when a point source is placed at its focus.  (c) With the help of a diagram show the shape of a wave front emerging from a convex lens when a plane wavefront which is normal to its principal axis is incident on it.                                                                                                                                                                                                   |   |