Karishma IX Mount Carmel School

MATHEMATICS

109 / 2017-18

Time: 3 hours

MM:80

General Instructions:

1. All questions are compulsory.

2. The question paper consists of 30 questions divided into 4 sections.

3. Section A comprises of 6 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each. Section D comprises of 8 questions of 4 marks each.

4. Use of calculators is not permitted.

Section A

1X6=6

1. Factorize x3+1

A. State whether $\sqrt{16}$ is a rational number or an irrational number.

3. In AABC, if AB >BC > AC, then arrange its internal angles in descending order.

N. Find the perimeter of an equilateral triangle with area $100\sqrt{3}~\text{cm}^2$.

5. What is the distance of the point (3a,4b) from x-axis where a=2 and b=1?

6. If (2,1) lies on the line 2kx - 4y = 0, find the value of k.

Section B

(2X 6 = 12)

7. A person goes to office by a car which is at a distance of $(81)^{1/4} - 8\sqrt[3]{216} + 15\sqrt[5]{32}$ $+\sqrt{625}$ km. Find the distance to the office.

8. Show that $x^2 + 4x + 7$ has no zeros.

9. What are the coordinates of points A, B and C? Find the coordinates of point D so that the four points make a rectangle.

10. State Euclid's fifth postulate. Does it imply the existence of parallel lines? Justify.

11. In Fig. if AB \parallel CD, \angle APQ = 60° and \angle PRD = 137°, find x and y

12. Prove that the medians of an equilateral triangle are congruent.

(3X10=30)

- 13. Express $1.3\overline{2} + 0.\overline{35}$ in the form of $\frac{p}{q}$ where p and q are integers, $q \neq 0$
- 14. Locate $\sqrt{5.5}$ on a number line.
- 15. For what value of a is $p(x) = ax^3 + 20x^2 + 32x 5$ exactly divisible by g(x) = 7x 1?
- 16. Simplify $(2x-5y)^3 (2x+5y)^3$
- 17. Draw the mirror image of $\triangle ABC$ in (i) x axis (ii) y axis

- 18. Give the geometric representation of x = -3 as an equation
 - (i) In one variable
 - (ii) In two variables-Also write its equation in standard form.
- In the fig. AM \perp BC and AN is the bisector of \angle BAC. If \angle B = 70° and \angle C = 35°, find \angle MAN

148 5 10%

36/

190

- 20. In $\triangle ABC$, $\angle A + \angle B = 116^{\circ}$, and $\angle B + \angle C = 126^{\circ}$. Find the measure of each angle of the triangle.
- 21. ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively. Show that these altitudes are equal.
- 22. A speed limit board indicating the speed limit in a colony is in the shape of an equilateral triangle with side 'a'. Using Heron's formula find the area of speed limit board, given that its perimeter is 144m.

Section D
$$\cdot$$
 (4X8 = 32)

- 23. The side BC of \triangle ABC is extended to form exterior angle ACD. If bisectors of \angle ABC and \angle ACD meet at E, Prove \angle BAC = 2 \angle BEC.
- In \triangle ABC, AD \perp BC, AE is the angle bisector of \angle BAC. If \angle ABC =60° and \angle ACB =40°, find \angle DAE
- 25. The sides of the triangle are 35cm, 54cm and 61cm respectively. Find the length of one of its altitudes.

26. If
$$x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
 and $y = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$, then find $x^2 + y^2$

27. Factorize using suitable identities:

a)
$$216a^3 - \frac{1}{8}$$
 b) $9x^2 + 1 - 12xy + 6x + 4y^2 - 4y$

- 28. Plot graph of the equations 2x+3y=12 and x+y=5 in the same graph and find their point of intersection.
- 29. Two sides AB, BC and median AM of \triangle ABC are respectively equal to sides PQ, QR and median PN of \triangle PQR. Show that
 - a) AABM and APQN are congruent
 - b) AABC and APQR are congruent.
- 30. Show that (x-1) is a factor of the polynomial $p(x) = x^3 + 2x^2 x 2$ and hence factorise p(x)

