IX MATHS PRACTICE PAPER

TIME: 3 HOURS

M.M.: 80

General Instructions:

a. All questions are compulsory.
b. The question paper consists of 30 questions divided into four sections A, B, C and D.
c. Section A contains 6 questions of 1 mark each. Section B contains 6 questions of 2 marks each. Section C contains 10 questions of 3 marks each. Section D contains 8 questions of 4 marks each.
d. There is no overall choice. However, an internal choice has been provided in four questions of 3 marks each and three questions of 4 marks each. You have to attempt only one of the alternatives in all such questions.
e. Use of calculators is not permitted.

SECTION-A

1. Simplify: $\left[\frac{7^{-4}}{4^{-2}}\right]^{1 / 4}$.
2. If $a^{\frac{1}{3}}+b^{\frac{1}{3}}+c^{\frac{1}{3}}=0$, then which among the following expression in correct?

$$
\begin{equation*}
a^{3}+b^{3}+c^{3}=0 ; a+b+c=3 a^{\frac{1}{3}} \cdot b^{\frac{1}{3}} \cdot c^{\frac{1}{3}} ; a+b+c=3 a b c ; a^{3}+b^{3}+c^{3}=3 a b c \tag{1}
\end{equation*}
$$

3. P is a point on y-axis at a distance of 6 units from x-axis lying below x-axis. What will be the coordinates of P ? $\mathbf{1}$
4. Solve the equation $x+4=10$ and state Euclid's axion used. $\mathbf{1}$
5. In a cricket match, a batsman hits a sixer 8 times out of 32 balls played. Find the probability that a sixer is not hit in a ball.
6. If a circle is divided into eight equal parts, find the angle subtended by each arc at the centre. $\mathbf{1}$

SECTION-B
7. If $(3 x-4 y)^{3}=27 x^{3}-64 y^{3}+a x y^{2}+b x^{2} y$, then find the value of $a+b$.
8. Express the following equation as a linear equation in two variables in the standard form and indicate the values of a, b and c: $\frac{\sqrt{3}}{2} y=3$.
9. If the point $(2 k-3, k+2)$ lies on the graph of equation $2 x+3 y+15=0$, find the value of k.
10. Consider two postulates given below: 2
a. Given any two distinct points R and S, there exists a third point T which is in between R and S.
b. There exist at least three points which are not in the same straight line.

Now, answer the following questions:
(i) Do these postulates contain any underfined terms?
(ii) Do they follow from Euclid's postulates? Explain.
11. The floor of a rectangular hall has a perimeter 150 m . If the cost of painting the four walls at the rate of Rs. $10 \mathrm{per} \mathrm{m}^{2}$ is Rs. 9000, find the height of the wall.
12. In a data, 14 numbers are arranged in ascending order. If the 9 th entry is increased by 5 , what will be the corresponding effect on the median?

SECTION-C

13. Represent $\sqrt{5}$ on the number line.
14. If $2 x+3 y=12$ and $x y=6$, find the value of $8 x^{3}+27 y^{3}$.
15. Gurnam and Akhthar have some money with them. Gurnam says to Akhthar, if you give me Rs. 40 , my money will be three times the money left with you. Represent this situation as a linear equation in two variables. Also, find two solutions for this equation.

OR

Half the perimeter of a rectangular garden in 36 m . Write a linear equation which satisfies this data. Draw the graph for the same.
16. In which quadeant or on which axis do the points $(-2,-4),(2,4),(0,2)$ and $(4,-6)$ lie? Verify your answer by locating them on the cartesian plane.
17. In figure Sunita has a plot of land which she decides to use for building an old age home and a dispensary for the needy. Her plot is shown in the figure. Plot $A B C D$ is a rhombus. If R is a point o diagonal $B D$, show that equal areas are alloted for building, old age home and the dispensary.

18. In figure if $A B\|C F, C D\| E F$, then find the value of x.

OR
In figure POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle \mathrm{ROS} \frac{1}{2}$ ($\angle \mathrm{QOS}-\angle \mathrm{POS}$).

19. If the non-parallel sides of a trapezium are equal, prove that it is cyclic.
20. A die is thrown 1000 times with the frequencies for the outcomes $1,2,3,4,5$ and 6 given in the following table:

Outcome	1	2	3	4	5	6
Frequency	179	150	157	149	175	190

Find the probability of getting each outcome.
21. A right triangle $A B C$ with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm . Find the volume of the solid so obtained.
22. Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm .

OR

Construct a triangle XYZ in which $\angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ}$ and $\mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm}$.

SECTION-D

23. Evaluate: $\frac{15}{\sqrt{10}+\sqrt{20}+\sqrt{40}-\sqrt{5}-\sqrt{80}}$, when it is given that $\sqrt{5}=2.236$ and $\sqrt{10}=3.162$.
24. If $a^{3}+b^{3}+c^{3}=3 a b c$ and $a+b+c=0$, prove that $\frac{(b+c)^{2}}{3 b c}+\frac{(c+a)^{2}}{3 a c}+\frac{(a+b)^{2}}{3 a b}=1$.
25. D is a point on side $B C$ of $\triangle A B C$ such that $A D=A C$. Show that $A B>A D$.

26. In figure $A B C D E$ is a pentagon. A line through B parallel to $A C$ meets $D C$ produced at F. Show that (i) ar $(A C B)=$ $\operatorname{ar}(A C F)$, (ii) $\operatorname{ar}(A E D F)=\operatorname{ar}(A B C D E)$.

In figure X and Y are the mid-points of $A C$ and $A B$ respectively, $Q P \| B C$ and $C Y Q$ and $B X P$ are straight lines. Prove that $\operatorname{ar}(\triangle \mathrm{ABP})=\operatorname{ar}(\triangle \mathrm{ACQ})$.

27. I, m and n are three parallel lines intersected by transversals p and q such that I, m and n cut off equal intercepts $A B$ and BC on p . Show that I, m and n cut off equal intercepts DE and EF on q also.

28. Find the area of an isosceles triangle whose one side is 10 cm greater than its each equal side and its perimeter is 100 cm. (Take $\sqrt{5}=2.236$)
29. The ratio of total surface area to the curved surface area of a right circular cylinder is $3: 2$. Find the volume, if its total surface area is $14784 \mathrm{~cm}^{2}$.

OR

A cloth having an area of $165 \mathrm{~m}^{2}$ is shaped into the form of a conical tent of radius 5 cm .
a. How many students can sit in the tent if a student on an average, occupies $\frac{5}{7} \mathrm{~m}^{2}$ on the ground?
b. Find the volume of the come.
30. A class consists of 50 students out of which 30 are girls. The mean marks scored by girls in a test is 73 (out of 100) and that of boys is 71 . Determine the mean score of the whole class.

OR

Prepare a continuous grouped frequency distribution from the following data:

Mid-point	3	15	25	35	45
Frequency	4	8	13	12	6

Also find the size of class intervals.

