(grunn

HALF YEARLY EXAMINATION - 2013-14

Mathematics

Set-B

Time Allowed: 3 Hrs.

Class - IX

M.M.: 90

SNP

General Instructions:

- All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section-A comprises of 8 questions of 1 mark each, Section-B comprises of 6 questions of 2 marks each, Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 10 questions of 4 marks each.
- (iii) Question numbers 1 to 8 in Section-A are multiple choice questions where you are required to select one correct option out of the given four.
- (iv) Use of calculator is not permitted.

Section-A

Question numbers 1 to 8 carry 1 mark each. For each question four alternatives have been provided of which only 1 is correct. You have to select the correct choice.

1. Among the following, the rational number is :

(b) √98

(d) $\sqrt{14}$

2. If $p(x) = 5x^2 - 3x - 18$ then value of $p(\frac{-1}{2})$ is:

五十五

5+6 : -

(a) -17

(b) $\frac{4}{16}$

(c) $\frac{61}{4}$

- (d) -61
- Maximum number of zeroes in a cubic polynomial are :
 - (a) 0

(b) 1

(C) 2

×(d) 3

- 4. If a+b+c=0, then $a^3+b^3+c^3$ is equal to :
 - (a) abc

(b) -3abc

(c) 0

- Yell 3abc
- 5. In the given figure I || m and m || n. If x : y = 3 : 2 then the value of z is :

(a) 120°

(b) 126°

(c) 108°

- (d) 72°
- 6. In $\triangle ABC$, BC = AB, If $\angle B = 70^{\circ}$ then $\angle A$ is:
 - (a) 55°

(b) 70°

(c) 110°

- (d) 45°
- The perpendicular distance of a point P(5, 3) from y-axis is:
 - (a) 3 units

(b) 8 units

(c) 5 units

- (d) 2 units
- 8. A point both of whose co-ordinates are negative lies in the :
 - (a) I Quadrant

(b) Il Quadrant

(c) III Quadrant

(d) IV Quadrant

Section-B

- Question numbers 9 to 14 carry 2 marks each.
- 9. Represent $0.\overline{237}$ in the form $\frac{p}{q}$ where p and q are integers, $q \neq 0$.
- **10.** Expand $\left(3x \frac{1}{2}y + 2z\right)^2$.
- 11. Give possible expression for the length and breadth of a rectangle whose area is given by $25a^2 35a + 12$.
- 12. If A, B, C are three points on a line and B lies between A and C, then prove that AB + BC = AC. State the Euclid's Axiom/Postulate used to prove this.

13. In the given figure AB $||CD, \angle APQ = 40^{\circ}, \angle PRD = 118^{\circ}$. Find x and y.

Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 - (8+11) 32 cm.

Section-C

J16(16-13)(16-8) (16-1) V16 X 3X8X5

Question numbers 15-24 carry 3 marks each.

If x = 5 and y = 2, find the value of:

(i)
$$(x^y + y^x)^{-1}$$

(ii)
$$(x^x + y^y)^{-1}$$

Represent $\sqrt{4.5}$ geometrically.

Represent
$$\sqrt{4.5}$$
 geometrically. $(5x)^3 - (3y)^3$
Factorize $125x^3 - 27y^3 + 8 + 90xy$. $(5x^2 - 3y)$ $(5x^2$

If 2x + y = -5, prove $8x^3 + y^3 - 30xy + 125 = 0$.

In the given figure, AOB is a line, OM bisects ∠AOP and ON bisects ∠BOP. Prove that 18. $\angle MON = 90^{\circ}$.

In the given figure AB = CF, EF = BD, $\angle AFE = \angle CBD$. Prove that:

(i)
$$\triangle AFE \cong \triangle CBD$$

(ii)
$$\angle D = \angle E$$

22. In the given figure, AB = AC. D is the point in the interior of $\triangle ABC$ such that $\angle DBC = \angle DCB$. Prove that AD bisects $\angle BAC$ of $\triangle ABC$.

23. ABC is a triangle in which altitudes BE and CF are equal. Then show that :

(i)
$$\triangle ABE \cong \triangle ACF$$

(ii)
$$AB = AC$$

24. Trees are being planted in a park, in the shape of a quadrilateral ABCD having $\angle C = 90^{\circ}$ AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy? What value is depicted here?

Section-D

Question numbers 25 to 34 carry 4 marks each.

25. If
$$a = \frac{\sqrt{2} + 1}{\sqrt{2} - 1}$$
 and $b = \frac{\sqrt{2} - 1}{\sqrt{2} + 1}$, find the value of $a^2 + b^2$.

26. Prove that :

If t

it.

31.

32. 33.

34

$$\frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{9}} = 1$$

27. Factorise by using factor theorem :

$$x^3 + 13x^2 + 32x + 20$$
.

28. Let R_1 and R_2 be the remainders when the polynomials $x^3 + 2x^2 - 5ax - 7$ and $x^3 + ax^2 - 12x + 6$ are divided by (x + 1) and (x - 2) respectively. If $2R_1 + R_2 = 6$, find the value of a.

(b) Factorize $64a^3 - 27b^3$.

30.

From the given graph, write:

- (i) The co-ordinates of the point B and F.
- (ii) The abscissa of the points D and H.
- (iii) The ordinate of the points A and C.
- (iv) The perpendicular distance of the point G from the x-axis.

[5]

31. If two lines intersect each other, then vertically opposite angles so formed are equal. Prove it. Using above, find the value of x in the given figure :

- Prove that the angles opposite to equal sides of a triangle are equal.
- 33. In the given figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that AD = BC and $\angle A = \angle B$.

34. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that BA = AD. Show that $\angle BCD$ is a right triangle.

