# SUMMATIVE ASSESSMENT - I, 2014 MATHEMATICS

# Class - IX

Time Allowed: 3 hours

Maximum Marks: 90

#### General Instructions:

- All questions are compulsory.
- The question paper consists of 31 questions divided into four sections A, B, C and D. Section-A comprises of 4 questions of 1 mark each; Section-B comprises of 6 questions of 2 marks each; Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 11 questions of 4 marks each.
- 3. There is no overall choice in this question paper.
- 4. Use of calculator is not permitted.

## SECTION-A

Question numbers 1 to 4 carry one mark each

- Find the product of  $20\sqrt{5}$  and  $\frac{1}{4\sqrt{75}}$ .
- Find a zero of the polynomial  $x^3 + 3x^2 3x 1$ .
- 3 If the angles of a triangle are in the ratio 2:3:5, then what type of triangle will it be?
- 4 Name the quadrant/ quadrants in which the ordinate of a point is negative.

## SECTION-B

Question numbers 5 to 10 carry two marks each.

- Simplify:  $\frac{6-4\sqrt{3}}{6+4\sqrt{3}}$  by rationalising the denominator.
- If y=2 and y=0 are the zeroes of the polynomial  $f(y)=2y^3-5y^2+ay+b$ , find the values of a 2 and b.
- 7 In figure, if AC = BD, then prove that AB = CD. A B C D
- 8. In the figure, if ∠ABD = ∠ACE, then prove that AB = AC.



In the figure, ABCD is a rectangle of dimensions 4 cm and 6 cm. E and F are mid - points of 2 AB and BC respectively. Find the area of the shaded portion.



Given a point X (0, 6), plot two points Y and Z on the graph paper so that XYZ is an isosceles 2 triangle. Write the coordinates of the points Y and Z also.

# SECTION-C

Question numbers 11 to 20 carry three marks each.

- 18

- Express  $0.2\overline{35}$  in the  $\frac{p}{q}$  form, where p and q are integers and  $q \neq 0$ .
- Find the values of a and b if  $\frac{5+\sqrt{6}}{5-\sqrt{6}} = a+b\sqrt{6}$
- 13 Show that (x-1), (x+3) and (x-5) are factors of  $x^3-3x^2-13x+15$ .
- 14 Factorise:  $2x^3 + 3x^2 1$
- 15 I and m are two parallel lines, intersected by another pair of parallel lines p and q as shown in 3 the figure. Show that ΔABC ≅ΔCDA.



In given figure, if AB||CD||EF, find the value of (y-x): (y+x).



In figure, sides AB and BC of ΔABC are produced to point E and D respectively. If 3 ∠EBC=110° and ∠ACD=135°, find ∠BAC.



3

18. In given figure, \( \subseteq EAB = \times EBA \) and AC = BD. Prove that AD = BC.



Page 2 of 3

- A park is in the shape of a quadrilateral ABCD in which AB = 9 m, 3 BC = 12 m, CD = 5 m, AD = 8 m and  $\angle$  C = 90°. Find the area of the park.
- Plot the points (-3, -4), (-5, 0) and  $\left(\frac{-3}{2}, \frac{1}{2}\right)$ . Also, write the quadrant or axes in which these points lie.

## SECTION-D

Question numbers 21 to 31 carry four marks each.

Simplify: 
$$\left(\frac{81}{16}\right)^{-\frac{3}{4}} \times \left[\left(\frac{25}{9}\right)^{-\frac{3}{2}} \div \left(\frac{5}{2}\right)^{-3}\right]$$

If 
$$x = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}}$$
 and  $y = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$ , then show that  $x^2 + xy + y^2 = 99$ .

- Prove that  $(x+y)^3 (x-y)^3 6y(x^2 y^2) = 8y^3$ .
- 24 Factorise:  $x^3 + 13x^2 + 32x + 20$
- If  $f(x) = x^4 2x^3 + 3x^2 ax + b$  is a polynomial such that when it is divided by x 1 and x + 1, the remainders are 5 and 19 respectively. Determine the remainder when f(x) is divided by (x 2).
- 26 Factorise:  $3u^3 4u^2 12u + 16$
- In the figure shown  $\angle 1 = (4x + 12)^\circ$  and  $\angle 2 = (6x + 8)^\circ$ . Find angle  $1 \angle 1$  and  $\angle 2$ .



On the intersection of roads Authorities are placing a street light to avoid accidents in the night. By doing so what value is shown by them?

28 In the given figure, PQ is the bisector of ∠P.
Show that: (i) PL>LQ (ii) PM>QM



- 29 If two lines intersect each other, then prove that the vertically opposite angles are equal.
- 30 In ∆ABC, AD is the bisector of ∠ A and D is the mid point of BC. Prove that ∆ABC is an 4 isosceles triangle.
- 31 E and F are respectively the mid-points of equal sides AB and AC of ΔABC. Show that 4 BF=CE.