NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

1. In Fig. 6.13, lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Fig. 6.13

Solution:

From the diagram, we have
($\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}$) and ($\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE})$ forms a straight line.
So, $\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=\angle \mathrm{COE}+\angle \mathrm{BOD}+\angle \mathrm{BOE}=180^{\circ}$
Now, by putting the values of $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$ we get
$\angle \mathrm{COE}=110^{\circ}, \angle \mathrm{BOE}=30^{\circ}$ and reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
2. In Fig. 6.14, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.

Fig. 6.14

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Solution:

We know that the sum of linear pair are always equal to 180°
So,
$\angle P O Y+a+b=180^{\circ}$
Putting the value of $\angle \mathrm{POY}=90^{\circ}$ (as given in the question) we get,
$a+b=90^{\circ}$
Now, it is given that $a: b=2: 3$ so,
Let a be $2 x$ and b be $3 x$
$\therefore 2 \mathrm{x}+3 \mathrm{x}=90^{\circ}$
Solving this we get
$5 x=90^{\circ}$
So, $x=18^{\circ}$
$\therefore \mathrm{a}=2 \times 18^{\circ}=36^{\circ}$
Similarly, b can be calculated and the value will be $b=3 \times 18^{\circ}=54^{\circ}$

From the diagram, $b+c$ also forms a straight angle so,
$b+c=180^{\circ}$
$\Rightarrow \mathrm{C}+54^{\circ}=180^{\circ}$
$\therefore \mathrm{c}=126^{\circ}$
3. In Fig. 6.15, $\angle \mathrm{PQR}=\angle \mathrm{PRQ}$, then prove that $\angle \mathrm{PQS}=\angle \mathrm{PRT}$.

Fig. 6.15

Solution:

Since ST is a straight line so,
$\angle P Q S+\angle P A R=180^{\circ}$ (linear pair) and
$\angle P R T+\angle P R Q=180^{\circ}$ (linear pair)
Now, $\angle \mathrm{PQS}+\angle \mathrm{PAR}=\angle \mathrm{PRT}+\angle \mathrm{PRQ}=180^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Since $\angle P Q R=\angle P R Q$ (as given in the question)
$\angle P Q S=\angle P R T$. (Hence proved).
4. In Fig. 6.16, if $x+y=w+z$, then prove that $A O B$ is a line.

Fig. 6.16

Solution:

For proving $A O B$ is a straight line, we will have to prove $x+y$ is a linear pair
i.e. $x+y=180^{\circ}$

We know that the angles around a point are 360° so,
$x+y+w+z=360^{\circ}$
In the question, it is given that,
$x+y=w+z$
So, $(x+y)+(x+y)=360^{\circ}$
$\Rightarrow 2(x+y)=360^{\circ}$
$\therefore(x+y)=180^{\circ}$ (Hence proved).
5. In Fig. 6.17, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that $\angle R O S=1 / 2(\angle Q O S-\angle P O S)$.

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Fig. 6.17

Solution:

In the question, it is given that $(\mathrm{OR} \perp \mathrm{PQ})$ and $\angle \mathrm{POQ}=180^{\circ}$
So, $\angle \mathrm{POS}+\angle \mathrm{ROS}+\angle \mathrm{ROQ}=180^{\circ}$
Now, $\angle \mathrm{POS}+\angle \mathrm{ROS}=180^{\circ}-90^{\circ}\left(\right.$ Since $\left.\angle \mathrm{POR}=\angle \mathrm{ROQ}=90^{\circ}\right)$
$\therefore \angle \mathrm{POS}+\angle \mathrm{ROS}=90^{\circ}$
Now, $\angle \mathrm{QOS}=\angle \mathrm{ROQ}+\angle \mathrm{ROS}$
It is given that $\angle \mathrm{ROQ}=90^{\circ}$,
$\therefore \angle \mathrm{QOS}=90^{\circ}+\angle \mathrm{ROS}$
Or, $\angle \mathrm{QOS}+\angle \mathrm{ROS}=90^{\circ}$
As $\angle \mathrm{POS}+\angle \mathrm{ROS}=90^{\circ}$ and $\angle \mathrm{QOS}+\angle \mathrm{ROS}=90^{\circ}$, we get
$\angle \mathrm{POS}+\angle \mathrm{ROS}=\angle \mathrm{QOS}+\angle \mathrm{ROS}$
$\Rightarrow 2 \angle \mathrm{ROS}+\angle \mathrm{POS}=\angle \mathrm{QOS}$
Or, $\angle \mathrm{ROS}=1 / 2(\angle \mathrm{QOS}-\angle \mathrm{POS})$ (Hence proved).
6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray YQ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.
Solution:

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Here, XP is a straight line
So, $\angle X Y Z+\angle Z Y P=180^{\circ}$
Putting the value of $\angle X Y Z=64^{\circ}$ we get,
$64^{\circ}+\angle Z Y P=180^{\circ}$
$\therefore \angle \mathrm{ZYP}=116^{\circ}$
From the diagram, we also know that $\angle \mathrm{ZYP}=\angle \mathrm{ZYQ}+\angle \mathrm{QYP}$
Now, as YQ bisects $\angle Z Y P$,
$\angle Z Y Q=\angle Q Y P$
Or, $\angle Z Y P=2 \angle Z Y Q$
$\therefore \angle \mathrm{ZYQ}=\angle \mathrm{QYP}=58^{\circ}$

Again, $\angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{ZYQ}$
By putting the value of $\angle X Y Z=64^{\circ}$ and $\angle Z Y Q=58^{\circ}$ we get.
$\angle X Y Q=64^{\circ}+58^{\circ}$
Or, $\angle X Y Q=122^{\circ}$
Now, reflex $\angle \mathrm{QYP}=180^{\circ}+\angle \mathrm{XYQ}$
We computed that the value of $\angle \mathrm{XYQ}=122^{\circ}$.
So,
$\angle Q Y P=180^{\circ}+122^{\circ}$
$\therefore \angle \mathrm{QYP}=302^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Exercise: 6.2
(Page No: 103)

1. In Fig. 6.28, find the values of x and y and then show that AB II CD.

Fig. 6.28

Solution:

We know that a linear pair is equal to 180°.
So, $x+50^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=130^{\circ}$
We also know that vertically opposite angles are equal.
So, $y=130^{\circ}$
In two parallel lines, the alternate interior angles are equal. In this, $x=y=130^{\circ}$
This proves that alternate interior angles are equal and so, $A B$ II $C D$.
2. In Fig. 6.29, if $A B$ II $C D, C D$ II $E F$ and $y: z=3: 7$, find x.

Fig. 6.29

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Solution:

It is known that $A B$ II $C D$ and $C D$ II $E F$
As the angles on the same side of a transversal line sums up to 180°,
$x+y=180^{\circ}----$ (i)
Also,
$\angle \mathrm{O}=\mathrm{z}$ (Since they are corresponding angles)
and, $y+\angle O=180^{\circ}$ (Since they are a linear pair)
So, $y+z=180^{\circ}$
Now, let $y=3 w$ and hence, $z=7 w($ As $y: z=3: 7$)
$\therefore 3 w+7 w=180^{\circ}$
Or, $10 \mathrm{w}=180^{\circ}$
So, $w=18^{\circ}$
Now, $y=3 \times 18^{\circ}=54^{\circ}$
and, $z=7 \times 18^{\circ}=126^{\circ}$
Now, angle x can be calculated from equation (i)
$x+y=180^{\circ}$
Or, $x+54^{\circ}=180^{\circ}$
$\therefore \mathrm{x}=126^{\circ}$
3. In Fig. 6.30, if AB II $\mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$, find $\angle \mathrm{AGE}, \angle \mathrm{GEF}$ and $\angle \mathrm{FGE}$.

Fig. 6.30

Solution:

Since $A B$ II CD, GE is a transversal.
It is given that $\angle \mathrm{GED}=126^{\circ}$
So, $\angle \mathrm{GED}=\angle \mathrm{AGE}=126^{\circ} \quad$ (As they are alternate interior angles)
Also,

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

```
\angleGED = \angleGEF + \angleFED
As EF }\perp\textrm{CD},\angle\textrm{FED}=9\mp@subsup{0}{}{\circ
\therefore\angleGED = \angleGEF+90'
Or, }\angle\textrm{GEF}=12\mp@subsup{6}{}{\circ}-9\mp@subsup{0}{}{\circ}=3\mp@subsup{6}{}{\circ
Again, }\angle\textrm{FGE}+\angle\textrm{GED}=18\mp@subsup{0}{}{\circ}\mathrm{ (Transversal)
Putting the value of }\angle\textrm{GED}=12\mp@subsup{6}{}{\circ}\mathrm{ we get,
\angleFGE = 54 
So,
\angleAGE = 126
\angleGEF=36
\angleFGE = 54*
```

4. In Fig. 6.31, if PQ II $\mathrm{ST}, \angle \mathrm{PQR}=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle \mathrm{QRS}$.
[Hint : Draw a line parallel to ST through point R.]

Fig. 6.31

Solution:

First, construct a line $X Y$ parallel to $P Q$.

We know that the angles on the same side of transversal is equal to 180°.
So, $\angle \mathrm{PQR}+\angle \mathrm{QRX}=180^{\circ}$
Or, $\angle \mathrm{QRX}=180^{\circ}-110^{\circ}$
$\therefore \angle \mathrm{QRX}=70^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Similarly,
$\angle \mathrm{RST}+\angle \mathrm{SRY}=180^{\circ}$
Or, $\angle S R Y=180^{\circ}-130^{\circ}$
$\therefore \angle \mathrm{SRY}=50^{\circ}$
Now, for the linear pairs on the line $X Y$ -
$\angle \mathrm{QRX}+\angle \mathrm{QRS}+\angle \mathrm{SRY}=180^{\circ}$
Putting their respective values, we get,
$\angle \mathrm{QRS}=180^{\circ}-70^{\circ}-50^{\circ}$
Hence, $\angle \mathrm{QRS}=60^{\circ}$
5. In Fig. 6.32, if $A B$ II $C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.

Fig. 6.32

Solution:

From the diagram,
$\angle A P Q=\angle P Q R \quad$ (Alternate interior angles)
Now, putting the value of $\angle A P Q=50^{\circ}$ and $\angle P Q R=x$ we get,
$x=50^{\circ}$
Also,
$\angle \mathrm{APR}=\angle \mathrm{PRD} \quad$ (Alternate interior angles)
Or, $\angle A P R=127^{\circ} \quad\left(\right.$ As it is given that $\left.\angle P R D=127^{\circ}\right)$
We know that
$\angle A P R=\angle A P Q+\angle Q P R$
Now, putting values of $\angle Q P R=y$ and $\angle A P R=127^{\circ}$ we get,
$127^{\circ}=50^{\circ}+y$
Or, $y=77^{\circ}$
Thus, the values of x and y are calculated as:
$x=50^{\circ}$ and $y=77^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

6. In Fig. 6.33,

$P Q$ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror RS at C and again reflects back along $C D$. Prove that $A B$ II $C D$.

Fig. 6.33
Solution:
First, draw two lines $B E$ and $C F$ such that $B E \perp P Q$ and $C F \perp R S$.
Now, since PQ II RS,
So, BE II CF

We know that,
Angle of incidence $=$ Angle of reflection \quad (By the law of reflection)
So,
$\angle 1=\angle 2$ and
$\angle 3=\angle 4$
We also know that alternate interior angles are equal. Here, $\mathrm{BE} \perp \mathrm{CF}$ and the transversal line BC cuts them at B and C
(As they are alternate interior angles)
Now, $\angle 1+\angle 2=\angle 3+\angle 4$
Or, $\angle \mathrm{ABC}=\angle \mathrm{DCB}$
So, $A B$ ॥ $C D$ alternate interior angles are equal)

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Exercise: 6.3

(Page No: 107)

1. In Fig. 6.39, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=$ 135° and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Fig. 6.39

Solution:

It is given the TQR is a straight line and so, the linear pairs (i.e. $\angle T Q P$ and $\angle P Q R$) will add up to 180°

So, $\angle \mathrm{TQP}+\angle \mathrm{PQR}=180^{\circ}$
Now, putting the value of $\angle \mathrm{TQP}=110^{\circ}$ we get,
$\angle P Q R=70^{\circ}$
Consider the $\triangle P Q R$,
Here, the side QP is extended to S and so, $\angle \mathrm{SPR}$ forms the exterior angle.
Thus, $\angle \mathrm{SPR}\left(\angle \mathrm{SPR}=135^{\circ}\right)$ is equal to the sum of interior opposite angles. (Triangle property)
Or, $\angle \mathrm{PQR}+\angle \mathrm{PRQ}=135^{\circ}$
Now, putting the value of $\angle P Q R=70^{\circ}$ we get,
$\angle \mathrm{PRQ}=135^{\circ}-70^{\circ}$
Hence, $\angle \mathrm{PRQ}=65^{\circ}$
2. In Fig. 6.40, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If YO and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Fig. 6.40

Solution:

We know that the sum of the interior angles of the triangle.
So, $\angle X+\angle X Y Z+\angle X Z Y=180^{\circ}$
Putting the values as given in the question we get,
$62^{\circ}+54^{\circ}+\angle X Z Y=180^{\circ}$
Or, $\angle X Z Y=64^{\circ}$
Now, we know that ZO is the bisector so,
$\angle O Z Y=1 / 2 \angle X Z Y$
$\therefore \angle \mathrm{OZY}=32^{\circ}$
Similarly, YO is a bisector and so,
$\angle O Y Z=1 / 2 \angle X Y Z$
$\mathrm{Or}, \angle \mathrm{OYZ}=27^{\circ}$ (As $\angle \mathrm{XYZ}=54^{\circ}$)
Now, as the sum of the interior angles of the triangle,
$\angle O Z Y+\angle O Y Z+\angle O=180^{\circ}$
Putting their respective values, we get,
$\angle O=180^{\circ}-32^{\circ}-27^{\circ}$
Hence, $\angle \mathrm{O}=121^{\circ}$
3. In Fig. 6.41, if $A B$ II $D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

Fig. 6.41

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Solution:

We know that
$A E$ is a transversal since $A B$ II $D E$
Here $\angle B A C$ and $\angle A E D$ are alternate interior angles.
Hence, $\angle \mathrm{BAC}=\angle \mathrm{AED}$
It is given that $\angle \mathrm{BAC}=35^{\circ}$
$\Rightarrow \angle A E D=35^{\circ}$
Now consider the triangle CDE. We know that the sum of the interior angles of a triangle is 180°.
$\therefore \angle \mathrm{DCE}+\angle \mathrm{CED}+\angle \mathrm{CDE}=180^{\circ}$
Putting the values, we get
$\angle \mathrm{DCE}+35^{\circ}+53^{\circ}=180^{\circ}$
Hence, $\angle \mathrm{DCE}=92^{\circ}$
4. In Fig. 6.42, if lines $P Q$ and $R S$ intersect at point T, such that $\angle P R T=40^{\circ}, \angle R P T=95^{\circ}$ and $\angle \mathrm{TSQ}=75^{\circ}$, find $\angle \mathrm{SQ}$.

Solution:

Consider triangle PRT.
$\angle \mathrm{PRT}+\angle \mathrm{RPT}+\angle \mathrm{PTR}=180^{\circ}$
So, $\angle \mathrm{PTR}=45^{\circ}$
Now $\angle \mathrm{PTR}$ will be equal to $\angle \mathrm{STQ}$ as they are vertically opposite angles.
$\mathrm{So}, \angle \mathrm{PTR}=\angle \mathrm{STQ}=45^{\circ}$
Again, in triangle STQ,
$\angle \mathrm{TSQ}+\angle \mathrm{PTR}+\angle \mathrm{SQT}=180^{\circ}$
Solving this we get,
$75^{\circ}+45^{\circ}+\angle \mathrm{SQT}=180^{\circ}$
$\angle S Q T=60^{\circ}$

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

5. In Fig. 6.43, if $P Q \perp P S, P Q$ II $S R, \angle S Q R=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.

Fig. 6.43

Solution:

$\mathrm{x}+\angle \mathrm{SQR}=\angle \mathrm{QRT} \quad$ (As they are alternate angles since QR is transversal)
So, $x+28^{\circ}=65^{\circ}$
$\therefore \mathrm{x}=37^{\circ}$
It is also known that alternate interior angles are same and so,
$\angle \mathrm{QSR}=\mathrm{x}=37^{\circ}$
Also, Now,
$\angle \mathrm{QRS}+\angle \mathrm{QRT}=180^{\circ} \quad$ (As they are a Linear pair)
Or, $\angle \mathrm{QRS}+65^{\circ}=180^{\circ}$
So, $\angle \mathrm{QRS}=115^{\circ}$
Using the angle sum property in \triangle SPQ
$\angle S P Q+x+y=180^{\circ}$
$90^{\circ}+37^{\circ}+y=180^{\circ}$
$y=180^{\circ}-127^{\circ}=53^{\circ}$

Hence, $y=53^{\circ}$
6. In Fig. 6.44, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=1 / 2 \angle Q P R$.

NCERT Solutions For Class 9 Maths Chapter 6- Lines and Angles

Fig. 6.44

Solution:

Consider the $\triangle P Q R$. $\angle P R S$ is the exterior angle and $\angle Q P R$ and $\angle P Q R$ are interior angles.
So, $\angle \mathrm{PRS}=\angle \mathrm{QPR}+\angle \mathrm{PQR} \quad$ (According to triangle property)
Or, $\angle \mathrm{PRS}-\angle \mathrm{PQR}=\angle \mathrm{QPR}$
Now, consider the $\triangle Q R T$,
$\angle T R S=\angle T Q R+\angle Q T R$
Or, $\angle \mathrm{QTR}=\angle \mathrm{TRS}-\angle \mathrm{TQR}$
We know that QT and RT bisect $\angle \mathrm{PQR}$ and $\angle \mathrm{PRS}$ respectively.
So, $\angle \mathrm{PRS}=2 \angle \mathrm{TRS}$ and $\angle \mathrm{PQR}=2 \angle \mathrm{TQR}$
Now, $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{PRS}-1 / 2 \angle \mathrm{PQR}$
Or, $\angle \mathrm{QTR}=1 / 2(\angle \mathrm{PRS}-\angle \mathrm{PQR})$
From (i) we know that $\angle \mathrm{PRS}-\angle \mathrm{PQR}=\angle \mathrm{QPR}$
So, $\angle \mathrm{QTR}=1 / 2 \angle \mathrm{QPR}$ (hence proved).

