EXERCISE 7.1

In each of the following, write the correct answer:

1. Which of the following is not a criterion for congruence of triangles?
(a) SAS
(b) ASA
(c) SSA
(d) SSS

Sol. SSA is not a criterion for congruence of triangles.
Hence, (c) is the correct answer.
2. If $\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$, then
(a) $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$
(b) $\triangle \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
(c) $\triangle \mathrm{BAC} \cong \triangle \mathrm{RPQ}$
(d) $\triangle \mathrm{PQR} \cong \triangle \mathrm{BCA}$

Sol.

We have $\mathrm{AB}=\mathrm{QR}, \mathrm{BC}=\mathrm{PR}$ and $\mathrm{CA}=\mathrm{PQ}$.
There is one-one correspondence between the vertices. That is, P correspondence to C, Q to A and R to B which is written as

$$
\mathrm{P} \leftrightarrow \mathrm{C}, \mathrm{Q} \leftrightarrow \mathrm{~A}, \mathrm{R} \leftrightarrow \mathrm{~B}
$$

Under this correspondence, we have
$\Delta \mathrm{CBA} \cong \triangle \mathrm{PRQ}$
Hence, (b) is the correct answer.
3. In $\triangle \mathrm{ABC}, \mathrm{AB}=\mathrm{AC}$ and $\angle \mathrm{B}=50^{\circ}$. Then, $\angle \mathrm{C}$ is equal to
(a) 40°
(b) 50°
(c) 80°
(d) 130°

Sol. In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{AB}=\mathrm{AC} \quad[\text { Given }]
$$

$$
\therefore \quad \angle \mathrm{C}=\angle \mathrm{B}
$$

$[\because$ Angles opposite to equal sides are equal]

```
But,
\(\angle \mathrm{B}=50^{\circ}\)
\(\therefore \quad \angle C=50^{\circ}\)
```


Hence, (b) is the correct answer.
4. In $\triangle \mathrm{ABC}, \mathrm{BC}=\mathrm{AB}$ and $\angle \mathrm{B}=80^{\circ}$. Then, $\angle \mathrm{A}$ is equal to
(a) 80°
(b) 40°
(c) 50°
(d) 100°

Sol. In $\triangle \mathrm{ABC}$, we have

Now, $\mathrm{QR}=4 \mathrm{~cm}$, therefore, $\mathrm{PQ}=4 \mathrm{~cm}$.
Hence, the length of PQ is 4 cm .
Hence, (a) is the correct answer.
6. D is a point on the side $B C$ of a $\triangle A B C$ such that AD bisects $\angle \mathrm{BAC}$. Then,
(a) $\mathrm{BD}=\mathrm{CD}$
(b) $\mathrm{BA}>\mathrm{BD}$
(c) $\mathrm{BD}>\mathrm{BA}$
(d) $\mathrm{CD}>\mathrm{CA}$

Sol. In $\triangle \mathrm{ADC}$,

$$
\begin{aligned}
& & \text { Ext. } \angle \mathrm{ADB} & >\text { Int. opp. } \angle \mathrm{DAC} \\
\therefore & & \angle \mathrm{ADB}>\angle \mathrm{BAD} & {[\because \angle \mathrm{BAD}=\angle \mathrm{DAC}] } \\
\Rightarrow & & \mathrm{AB} & >\mathrm{BD}
\end{aligned}
$$

[\because Side opposite to greater angle is longer.]
7. It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$. Then, which of the following is true?
(a) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{~F}=60^{\circ}$
(b) $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(c) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$
(d) $\mathrm{DE}=5 \mathrm{~cm}, \angle \mathrm{D}=60^{\circ}$

Sol.

It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{FDE}$ and $\mathrm{AB}=5 \mathrm{~cm}, \angle \mathrm{~B}=40^{\circ}$ and $\angle \mathrm{A}=80^{\circ}$, so $\angle \mathrm{C}=60^{\circ}$.

The sides of $\triangle \mathrm{ABC}$ fall on corresponding equal sides of $\triangle \mathrm{FDE}$. A corresponds to F, B corresponds to D , and C corresponds to E .
So, only $\mathrm{DF}=5 \mathrm{~cm}, \angle \mathrm{E}=60^{\circ}$ is true.
Hence, (b) is the correct answer.
8. Two sides of a triangle are of lengths 5 cm and 1.5 cm . The length of the third side of the triangle cannot be
(a) 3.6 cm
(b) 4.1 cm
(c) 3.8 cm
(d) 3.4 cm

Sol. Since sum of any two sides of a triangle is always greater than the third side, so third side of the triangle cannot be 3.4 cm because then $1.5 \mathrm{~cm}+3.4 \mathrm{~cm}=4.9<$ third side $(5 \mathrm{~cm})$.
Hence, (d) is the correct answer.
9. In $\triangle \mathrm{PQR}$, if $\angle \mathrm{R}>\angle \mathrm{Q}$, then
(a) $\mathrm{QR}>\mathrm{PR}$
(b) $\mathrm{PQ}>\mathrm{PR}$
(c) $\mathrm{PQ}<\mathrm{PR}$
(d) $\mathrm{QR}<\mathrm{PR}$

Sol. In $\triangle \mathrm{PQR}$, we have $\angle \mathrm{R}>\angle \mathrm{Q}$

$\therefore \quad \mathrm{PQ}>\mathrm{PR} \quad[\because$ Side opposite to greater angle is longer $]$
Hence, (b) is the correct answer.
10. In triangles ABC and $\mathrm{PQR}, \mathrm{AB}=\mathrm{AC}, \angle \mathrm{C}=\angle \mathrm{P}$ and $\angle \mathrm{B}=\angle \mathrm{Q}$. The two triangles are
(a) isosceles but not congruent.
(b) isosceles and congruent.
(c) congruent but not isosceles.
(d) neither congruent nor isosceles.

Sol.

$$
\mathrm{AB}=\mathrm{AC}
$$

$\therefore \quad \angle \mathrm{B}=\angle \mathrm{C} \quad[\because$ Angles opposite to equal sides are equal $]$

Also, $\quad \angle \mathrm{B}=\angle \mathrm{Q}$ and $\angle \mathrm{C}=\angle \mathrm{P} \quad$ [Given]
$\therefore \quad \angle \mathrm{Q}=\angle \mathrm{P}$
$\Rightarrow \quad \mathrm{PR}=\mathrm{RQ} \quad[\because$ Sides opp. to equal $\angle s$ equal $]$
Hence, (a) is the correct option.
11. In triangles ABC and $\mathrm{DEF}, \mathrm{AB}=\mathrm{FD}$ and $\angle \mathrm{A}=\angle \mathrm{D}$. The two triangles will be congruent by SAS axiom. Then,
(a) $\mathrm{BC}=\mathrm{EF}$
(b) $\mathrm{AC}=\mathrm{DE}$
(c) $\mathrm{AC}=\mathrm{EF}$
(d) $\mathrm{BC}=\mathrm{DE}$

Sol. (b) AC=DE.

EXERCISE 7.2

1. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side AB of $\Delta \mathrm{ABC}$ so that the B
 two triangles are congruent? Give reasons for your answer.
Sol. In triangles ABC and PQR , we have

$$
\begin{aligned}
\angle \mathrm{A} & =\angle \mathrm{Q} \\
\angle \mathrm{~B} & =\angle \mathrm{R}
\end{aligned}
$$

For the triangles to be congruent, we must have $\mathrm{AB}=\mathrm{QR}$. They will be congruent by ASA congruence rule.
2. In triangles ABC and $\mathrm{PQR}, \angle \mathrm{A}=\angle \mathrm{Q}$ and $\angle \mathrm{B}=\angle \mathrm{R}$. Which side of $\triangle \mathrm{PQR}$ should be equal to side BC of $\triangle \mathrm{ABC}$ so that the B
 two triangles are congruent? Give reasons for your answer.
Sol. In triangles ABC and PQR , we have

$$
\angle \mathrm{A}=\angle \mathrm{Q} \text { and } \angle \mathrm{B}=\angle \mathrm{R}
$$

For the triangles to be congruent, we must have

$$
\mathrm{BC}=\mathrm{RP}
$$

They will be congruent by AAS congruence rule.
3. "If two sides and an angle of one triangle are equal to two sides and an angle of another triangle, then the two triangles must be congruent." Is the statement true? Why?
Sol. This statement is not true. Angles must be the included angles.
4. "If two angles and a side of one triangle are equal to two angles and a side of another triangle, then the two triangles must be congruent." Is the statement true? Why?
Sol. This statement is true. Sides must be corresponding sides.
5. Is it possible to construct a triangle with lengths of sides $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm ? Give reasons for your answer.
Sol. We know that the sum of any two sides of a triangle is always greater than the third side.
Here, the sum of two sides whose lengths are 4 cm and $3 \mathrm{~cm}=4 \mathrm{~cm}+3 \mathrm{~cm}=7 \mathrm{~cm}$,
which is equal to the length of third side, i.e., 7 cm .

Hence, it is not possible to construct a triangle with lengths of sides $4 \mathrm{~cm}, 3 \mathrm{~cm}$ and 7 cm .
6. It is given that $\triangle \mathrm{ABC} \cong \triangle \mathrm{RPQ}$. Is it true to say that $\mathrm{BC}=\mathrm{QR}$? Why?

Sol. It is false that $B C=Q R$ because $B C=P Q$ as $\triangle A B C \cong \triangle R P Q$.
7. It is given that $\triangle \mathrm{PQR} \cong \triangle \mathrm{EDF}$, then is it true to say that $\mathrm{PR}=\mathrm{EF}$? Give reasons for your answer.
Sol. Yes, $\mathrm{PR}=\mathrm{EF}$ because they are the corresponding sides of $\Delta \mathrm{PQR}$ and $\Delta \mathrm{EDF}$.
8. In $\triangle \mathrm{PQR}, \angle \mathrm{P}=70^{\circ}$ and $\angle \mathrm{R}=30^{\circ}$. Which side of this triangle is the longest? Give reasons for your answer.
Sol. In $\triangle \mathrm{PQR}$, we have

$$
\begin{aligned}
\angle \mathrm{Q} & =180^{\circ}-(\angle \mathrm{P}+\angle \mathrm{R}) \\
& =180^{\circ}-\left(70^{\circ}+30^{\circ}\right)=180^{\circ}-100^{\circ}=80^{\circ}
\end{aligned}
$$

Now, in $\triangle \mathrm{PQR}, \angle \mathrm{Q}$ is the larger (greater) and side opposite to greater angle is longer.
Hence, PR is the longest side.
9. $A D$ is a median of the triangle $A B C$. Is it true that $A B+B C+C A>2 A D$? Give reason for your answer.
Sol. In $\triangle A B D$, we have $A B+B D>A D$
$[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]
Now, in $\triangle \mathrm{ADC}$, we have
$\mathrm{AC}+\mathrm{CD}>\mathrm{AD}$

$[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]
Adding (1) and (2), we get
$\mathrm{AB}+\mathrm{BD}+\mathrm{CD}+\mathrm{AC}>2 \mathrm{AD}$
$\Rightarrow \quad \mathrm{AB}+\mathrm{BC}+\mathrm{CA}>2 \mathrm{AD} \quad[\because \mathrm{BD}=\mathrm{CD}$ as AD is median of $\triangle \mathrm{ABC}]$
10. M is a point on side $B C$ of a triangle $A B C$ such that $A M$ is the bisector of $\angle \mathrm{BAC}$. Is it true to say that perimeter of the triangle is greater than 2AM? Give reason for your answer.
Sol. We have to prove that

$$
\mathrm{AB}+\mathrm{BC}+\mathrm{AC}>2 \mathrm{AM}
$$

As sum of any two sides of a triangle is greater than the third side, so in $\triangle \mathrm{ABM}$, we have

$$
\begin{equation*}
\mathrm{AB}+\mathrm{BM}>\mathrm{AM} \tag{1}
\end{equation*}
$$

and in $\triangle \mathrm{ACM}, \quad \mathrm{AC}+\mathrm{CM}>\mathrm{AM}$
Adding (1) and (2), we get
$\mathrm{AB}+\mathrm{BM}+\mathrm{AC}+\mathrm{CM}>2 \mathrm{AM}$

$$
\begin{aligned}
\text { or } & \mathrm{AB}+(\mathrm{BM}+\mathrm{CM})+\mathrm{AC}>2 \mathrm{AM} \\
\Rightarrow & \mathrm{AB}+\mathrm{BC}+\mathrm{AC}>2 \mathrm{AM}
\end{aligned}
$$

Hence, it is true to say that perimeter of the triangle is greater than 2AM.
11. Is it possible to construct a triangle with lengths of sides as $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm ? Give reason for your answer.
Sol. No, it is not possible to construct a triangle whose sides are $9 \mathrm{~cm}, 7 \mathrm{~cm}$ and 17 cm because

$$
9 \mathrm{~cm}+7 \mathrm{~cm}=16 \mathrm{~cm}<17 \mathrm{~cm}
$$

where as sum of any two sides of a triangle is always greater than the third side.
12. Is it possible to construct a triangle with lengths of its sides as 8 cm , 7 cm and 4 cm ? Give reason for your answer.
Sol. Yes, it is possible to construct a triangle with lengths of sides as $8 \mathrm{~cm}, 7 \mathrm{~cm}$ and 4 cm as sum of any two sides of a triangle is greater than the third side.

EXERCISE 7.3

1. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and BD and CE are its two medians. Show that $\mathrm{BD}=\mathrm{CE}$.
Sol. Given: $\triangle \mathrm{ABC}$ with $\mathrm{AB}=\mathrm{AC}$ and $\mathrm{AD}=\mathrm{CD}, \mathrm{AE}=\mathrm{BE}$.
To prove: $\mathrm{BD}=\mathrm{CE}$
Proof: In $\triangle A B C$, we have

$$
\mathrm{AB}=\mathrm{AC} \quad[\text { Given }]
$$

$\Rightarrow \quad \frac{1}{2} \mathrm{AB}=\frac{1}{2} \mathrm{AC}$
$\Rightarrow \quad \mathrm{AE}=\mathrm{AD}$

$[\because \mathrm{D}$ is the mid-point of AC and E is the mid-point of AB$]$
Now, in $\triangle A B D$ and $\triangle A C E$, we have

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AC} & & {[\text { Given }] } \\
\angle \mathrm{A} & =\angle \mathrm{A} & & \text { [Common angle] } \\
\mathrm{AE} & =\mathrm{AD} & & \text { [Proved above] }
\end{aligned}
$$

So, by SAS criterion of congruence, we have
$\Delta \mathrm{ABD} \cong \triangle \mathrm{ACE}$
$\Rightarrow \quad \mathrm{BD}=\mathrm{CE} \quad[\mathrm{CPCT}]$
Hence, proved.
2. In the given figure, D and E are points on side $B C$ of a $\triangle A B C$ such that $\mathrm{BD}=\mathrm{CE}$ and $\mathrm{AD}=\mathrm{AE}$. Show that $\triangle \mathrm{ABD} \cong \mathrm{ACE}$.
Sol. Given : $\Delta \mathrm{ABC}$ in which $\mathrm{BD}=\mathrm{CE}$ and $\mathrm{AD}=\mathrm{AE}$.
To prove: $\triangle \mathrm{ABD} \cong \triangle \mathrm{ACE}$

Proof: In $\triangle A D E$, we have

$$
\begin{aligned}
& \mathrm{AD}=\mathrm{AE} \quad \text { [Given] } \\
& \Rightarrow \quad \angle 2=1
\end{aligned}
$$

$[\because$ Angles opposite to equal sides of a triangle are equal]
Now, $\angle 1+\angle 3=180^{\circ}$
[Linear pair axiom] $\angle 2+\angle 4=180^{\circ}$
[Linear pair axiom]
From equations (1) and (2), we get

$$
\angle 1+\angle 3=\angle 2+\angle 4
$$

$\Rightarrow \quad \angle 3=\angle 4$
$[\because \angle 1=\angle 2]$
Now, in $\triangle \mathrm{ABD}$ and $\triangle \mathrm{ACE}$, we have

$$
\begin{aligned}
\mathrm{AD} & =\mathrm{AE} & & {[\text { Given }] } \\
\angle 3 & =\angle 4 & & \text { [Proved above] } \\
\mathrm{BD} & =\mathrm{CE} & & \text { [Given] }
\end{aligned}
$$

So, by SAS criterion of congruence, we have

$$
\Delta \mathrm{ABD} \cong \triangle \mathrm{ACE}
$$

Hence, proved.
3. CDE is an equilateral triangle formed on a side CD of a square ABCD (See fig.). Show that $\triangle \mathrm{ADE} \cong \triangle B C E$.
Sol. Given : An equilateral triangle CDE formed on side CD of square ABCD .
To prove : $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
Proof: In square $A B C D$, we have

$$
\angle 1=\angle 2 \quad \ldots(1)\left[\because \text { Each }=90^{\circ}\right]
$$

Now, in $\triangle \mathrm{DCE}$, we have

$$
\angle 3=\angle 4
$$

$$
\ldots(2)\left[\because \text { Each }=60^{\circ}\right]
$$

Adding (1) of (2), we get

$$
\begin{array}{rlrl}
& & \angle 1+\angle 3 & =\angle 2+\angle 4 \\
\Rightarrow \quad & \angle \mathrm{ADE} & =\angle \mathrm{BCE}
\end{array}
$$

Now, in $\triangle \mathrm{ADE}$ and $\triangle \mathrm{BCE}$, we have

$$
\begin{aligned}
\mathrm{DE} & =\mathrm{CE} & & \text { [Sides of an equilateral triangle are equal] } \\
\angle \mathrm{ADE} & =\angle \mathrm{BCE} & & \text { [Proved above] } \\
\mathrm{AD} & =\mathrm{BC} & & \text { [Sides of a square are equal in length] }
\end{aligned}
$$

So, by SAS criterion of congruence, we have $\triangle \mathrm{ADE} \cong \triangle \mathrm{BCE}$
Hence, proved
4. In the given figure, $\mathrm{BA} \perp \mathrm{AC}, \mathrm{DE} \perp \mathrm{DF}$ such that $\mathrm{BA}=\mathrm{DE}$ and $\mathrm{BF}=\mathrm{EC}$. Show that $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Sol. We have BF $=\mathrm{EC}$

$$
\begin{aligned}
& \therefore \quad \mathrm{BF}+\mathrm{FC}=\mathrm{CE}+\mathrm{FC} \Rightarrow \mathrm{BC}=\mathrm{EF} \\
& \text { In } \triangle \mathrm{ABC}, \angle \mathrm{~A}=90^{\circ} \text { and in } \triangle \mathrm{DEF}, \angle \mathrm{D}=90^{\circ} . \\
& \therefore \triangle \mathrm{ABC} \text { and } \triangle \mathrm{DEF} \text { are right triangles. } \\
& \text { Now, in right triangles } \mathrm{ABC} \text { and } \mathrm{DEF} \text {, we have } \\
& \text { and } \quad \mathrm{BA}=\mathrm{DE} \\
& \therefore \quad \mathrm{BC}=\mathrm{EF}
\end{aligned}
$$

5. O is a point on the side SR of a $\triangle \mathrm{PSR}$ such that $P Q=P R$. Prove that PS $>$ PQ.
Sol. Given : $\mathrm{PQ}=\mathrm{PR}$
To prove: $\mathrm{PS}>\mathrm{PQ}$
Proof: In $\triangle \mathrm{PRQ}$, we have

$$
\Rightarrow \quad \begin{gathered}
\mathrm{PR}=\mathrm{PQ} \quad[\text { Given }] \\
\angle 1=\angle \mathrm{R} \\
\\
\\
{[\because \text { Angles opposite to equal }} \\
\text { sides of a triangle are equal }]
\end{gathered}
$$

But, $\quad \angle 1>\angle \mathrm{S} \quad[\because$ Exterior angle of a triangle is greater than each of the remote interior angles]

$$
[\because \angle 1=\angle \mathrm{R}]
$$

$\Rightarrow \quad \angle \mathrm{R}>\angle \mathrm{S}$
$[\because$ In a triangle, side opposite to the large is longer]
Hence, proved.
6. S is any point on side $Q R$ of a $\triangle P Q R$. Show that $P Q+Q R+R P>2 P S$.

Sol. Given: A point S on side QR of $\triangle \mathrm{PQR}$.
To prove : $\mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$
Proof: In $\triangle \mathrm{PQS}$, we have $P Q+Q S>P S$
$[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]

Now, in \triangle PSR, we have
 RS $+\mathrm{RP}>\mathrm{PS} \quad \ldots 2[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]

Adding (1) and (2), we get

$$
\mathrm{PQ}+\mathrm{QS}+\mathrm{RS}+\mathrm{RP}>2 \mathrm{PS}
$$

$\Rightarrow \quad \mathrm{PQ}+\mathrm{QR}+\mathrm{RP}>2 \mathrm{PS}$
Hence, proved
7. D is any point on side $A C$ of a $\triangle A B C$ with $A B=A C$. Show that $C D<B D$.

Sol. In $\triangle \mathrm{ABC}$, we have

$$
\mathrm{AB}=\mathrm{AC} \quad[\text { Given }]
$$

$\therefore \quad \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$[\because$ Angles opp. to equal sides of a triangle are equal]
Now, $\quad \angle \mathrm{DBC}<\angle \mathrm{ABC}$
$\therefore \quad \angle \mathrm{DBC}<\angle \mathrm{ACB}$ or $\angle \mathrm{DBC}<\angle \mathrm{DCB}$
Hence, $\mathrm{CD}<\mathrm{BD}$. $\quad[\because$ Side opposite to greater angle is longer]
8. In the given figure, $l \| m$

Sol. In $\triangle \mathrm{AMC}$ and $\triangle \mathrm{BMD}$, we have

$$
\begin{aligned}
& \angle 1=\angle 3 \\
& \angle 2=\angle 4
\end{aligned}
$$

[Alt. $\angle s$ because $l \| m$]
[Vert. opp. $\angle s$]

$$
\left.\begin{array}{rrr}
& \mathrm{AM} & =\mathrm{BM}
\end{array}\right] \text { [Given] } \begin{array}{lrr}
\therefore & \triangle \mathrm{AMC} & \cong \Delta \mathrm{BMD}
\end{array} \quad \text { [By AAS congruence rule] }
$$

Hence, M is also the mid-point of CD
9. Bisectors of the angles B and C of an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ intersect each other at $\mathrm{O} . \mathrm{BO}$ is produced to a point M. Prove that $\angle \mathrm{MOC}=\angle \mathrm{ABC}$.
Sol. Bisectors of the angles B and C of an isosceles triangle ABC with $\mathrm{AB}=\mathrm{AC}$ intersect each other at $\mathrm{O} . \mathrm{BO}$ is produced to a point M .

In $\triangle \mathrm{ABC}$, we have
$\mathrm{AB}=\mathrm{AC}$
$\therefore \angle \mathrm{ABC}=\angle \mathrm{ACB}$
$[\because$ Angles opposite to equal sides of a triangle are equal]
$\Rightarrow \quad \frac{1}{2} \angle \mathrm{ABC}=\frac{1}{2} \angle \mathrm{ACB}$,

i.e., $\quad \angle 1=\angle 2[\because \mathrm{BO}$ and CO are bisectors of $\angle \mathrm{B}$ and $\angle \mathrm{C}]$

In $\triangle \mathrm{OBC}$, Ext. $\angle \mathrm{MOC}=\angle 1+\angle 2$
$[\because$ Exterior angle of a triangle is equal to the sum of interior opposite angles]
$\Rightarrow \quad$ Ext. $\angle \mathrm{MOC}=2 \angle 1 \quad[\because \angle 1=\angle 2]$
Hence, $\angle \mathrm{MOC}=\angle \mathrm{ABC}$.
10. Bisectors of the angles B and C of an isosceles triangle $A B C$ with $A B=A C$ intersect each other at O. Show that external angle adjacent to $\angle \mathrm{ABC}$ is equal to $\angle \mathrm{BOC}$.
Sol. In $\triangle \mathrm{ABC}$, we have

$$
\begin{aligned}
& & \mathrm{AB} & =\mathrm{AC} \\
\therefore & & \angle \mathrm{~B} & =\angle \mathrm{C}
\end{aligned}
$$

$[\because$ Angles opposite to equal sides of a triangle are equal]

$$
\begin{equation*}
\therefore \quad \frac{1}{2} \angle \mathrm{~B}=\frac{1}{2} \angle \mathrm{C} \tag{1}
\end{equation*}
$$

In $\Delta \mathrm{OBC}$, we have

$$
\begin{align*}
& \\
& \\
& \text { and } \quad \angle 1=\frac{1}{2} \angle \mathrm{~B} \tag{1}\\
& \therefore \quad \angle 2=\frac{1}{2} \angle \mathrm{C} \\
& \Rightarrow \quad \angle \mathrm{DBC}+\angle 1+\angle \mathrm{OBA}=180^{\circ} \\
& \Rightarrow \quad \angle \mathrm{DBC}+2 \angle 1=180^{\circ} \\
& \text { In } \triangle \mathrm{OBC},
\end{align*}
$$

$$
\begin{aligned}
\angle 1+\angle 2+\angle \mathrm{BOC} & =180^{\circ} \\
\Rightarrow \quad 2 \angle 1+\angle \mathrm{BOC} & =180^{\circ}
\end{aligned}
$$

$[\because \mathrm{ABD}$ is a straight line $]$ $[\because \angle 1=\angle \mathrm{OBA}] \ldots(1)$

From (1) and (2), we get

$$
\begin{array}{rlrl}
& & \angle \mathrm{DBC}+2 \angle 1 & =2 \angle 1+\angle \mathrm{BOC} \\
\Rightarrow & \angle \mathrm{DBC} & =\angle \mathrm{BOC}
\end{array}
$$

11. In the given figure, AD is the bisector of $\angle B A C$. Prove that $A B>B D$.
Sol. Since exterior angle of a triangle is greater than either of the interior opposite angles, therefore, in $\triangle \mathrm{ACD}$, Ext. $\angle 3>\angle 2 \Rightarrow \angle 3>\angle 1$
$[\because \mathrm{AD}$ is the bisector of $\angle \mathrm{BAC}$, so $\angle 1=\angle 2$]
Now, in $\triangle \mathrm{ABD}$, we have

$$
\angle 3>\angle 1
$$

Hence, $\mathrm{AB}>\mathrm{BD}$. $[\because$ In a triangle, side opposite to greater angle is longer $]$

EXERCISE 7.4

1. Find all the angles of an equilateral triangle.

Sol. In $\Delta \mathrm{ABC}$, we have

$$
\begin{array}{lll}
& & \mathrm{AB}=\mathrm{AC} \\
\Rightarrow & \angle \mathrm{C}=\angle \mathrm{B} \\
& & {[\because \text { Angles opposite to equal }} \\
& & \text { sides of a triangle are equal }] \\
& & \mathrm{BC}=\mathrm{AC} \\
\Rightarrow & \angle \mathrm{~A}=\angle \mathrm{B} \tag{2}
\end{array}
$$

Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad[\because$ Angle sum property of a triangle $]$
$\Rightarrow \quad \angle \mathrm{A}+\angle \mathrm{A}+\angle \mathrm{A}=180^{\circ} \quad$ [From (1) and (2)]
$\Rightarrow \quad 3 \angle A=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{A}=\frac{180^{\circ}}{3}=60^{\circ}$
$\therefore \quad \angle \mathrm{A}=\angle \mathrm{B}=\angle \mathrm{C}=60^{\circ}$
2. The image of an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D as shown in the given figure. Prove that the image is as far behind the mirror as the object is in front of the mirror.
[Hint: CN is normal to the mirror.

Also, angle of incidence $=$ angle of reflection].
Sol. Let AB intersect LM at O . We have to prove that $\mathrm{AO}=\mathrm{BO}$.
Now,
$\angle i=\angle r$
$[\because$ Angle of incidence $=$ Angle of reflection $]$

$$
\begin{array}{ll}
& \angle \mathrm{B}=\angle i \\
\text { and } & \angle \mathrm{A}=\angle r \tag{3}
\end{array}
$$

[Alternate int. $\angle s$]
From (1), (2) and (3), we get
$\angle \mathrm{B}=\angle \mathrm{A}$
$\Rightarrow \quad \angle \mathrm{BCO}=\angle \mathrm{ACO}$

In $\triangle \mathrm{BOC}$ and $\triangle \mathrm{AOC}$, we have

	$\angle 1=\angle 2$	[Each $=90^{\circ}$]
	$\mathrm{OC}=\mathrm{OC}$	[Common side]
and	$\angle \mathrm{BCO}=\angle \mathrm{ACO}$	[Proved above]
\therefore	$\triangle \mathrm{BOC} \cong \triangle \mathrm{AOC}$	[ASA congruence rule]
Hence,	$\mathrm{AO}=\mathrm{BO}$	[CPCT]

3. ABC is an isosceles triangle with $\mathrm{AB}=\mathrm{AC}$ and D is a point on $B C$ such that $A D \perp B C$ (See fig.). To prove that $\angle \mathrm{BAD}=\angle \mathrm{CAD}$, a student proceeded as follows:
In $\triangle A B D$ and $\triangle A C D$,

$$
\mathrm{AB}=\mathrm{AC} \quad \text { (Given) }
$$

$$
\angle \mathrm{B}=\angle \mathrm{C} \quad \text { (because } \mathrm{AB}=\mathrm{AC})
$$

and $\quad \angle \mathrm{ADB}=\angle \mathrm{ADC}$
Therefore,

$$
\Delta \mathrm{ABD}=\Delta \mathrm{ACD}(\mathrm{AAS})
$$

So, $\quad \angle \mathrm{BAD}=\angle \mathrm{CAD}(\mathrm{CPCT})$
What is the defect in the above arguments?
[Hint: Recall how $\angle \mathrm{B}=\angle \mathrm{C}$ is proved when $\mathrm{AB}=\mathrm{AC}$]
Sol. In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{ADC}$, we have

$$
\angle \mathrm{ADB}=\angle \mathrm{ADC}
$$

$\left[\therefore\right.$ Each equal to 90°]
$\mathrm{AB}=\mathrm{AC}$ [Given]
$\mathrm{AD}=\mathrm{AD} \quad$ [Common side]
So, by RHS criterion of congruence, we have

$$
\Delta \mathrm{ADB} \cong \triangle \mathrm{ADC}
$$

$\therefore \quad \angle \mathrm{BAD}=\angle \mathrm{CAD}$
[CPCT]
Hence, proved.

4. P is a point on the bisector of $\angle A B C$. If the line through P , parallel to BA meet BC at Q , prove that BPQ is an isosceles triangle.
Sol. We have to prove that BPQ is an isosceles triangle.

$$
\begin{equation*}
\angle 1=\angle 2 \tag{1}
\end{equation*}
$$

$$
[\because \mathrm{BP} \text { is the bisector of } \angle \mathrm{ABC}]
$$

Now, PQ is parallel to BA and BP cuts them

$$
\begin{equation*}
\therefore \quad \angle 1=\angle 3 \tag{2}
\end{equation*}
$$

From (1) and (2), we get

$$
\angle 2=\angle 3
$$

In $\triangle \mathrm{BPQ}$, we have

$$
\left.\left.\begin{array}{rlrl}
& & \angle 2 & =\angle 3
\end{array} \quad \text { [Proved above] }\right] \text { are equal }\right]
$$

Hence, BPQ is an isosceles triangle.
5. ABCD is a quadrilateral in which $A B=B C$ and $A D=C D$. Show that BD bisects both the angles ABC and ADC.
Sol. In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CBD}$, we have

$$
\begin{align*}
\mathrm{AB} & =\mathrm{BC} & \text { [Given] } \\
\mathrm{AD} & =\mathrm{CD} & \text { [Given] } \\
\mathrm{BD} & =\mathrm{BD} & \text { [Common side] } \\
\therefore \quad \triangle \mathrm{ABD} & \cong \triangle \mathrm{CBD} & \text { [By SSS } \\
\Rightarrow \quad \angle 1 & =\angle 2 & \text { congruence rule] }
\end{align*}
$$

and $\angle 3=\angle 4$
Hence, BD bisects both the angles ABC and ADC .
6. ABC is a right triangle with $\mathrm{AB}=\mathrm{AC}$. Bisector of $\angle \mathrm{A}$ meets BC at D . Prove that $\mathrm{BC}=2 \mathrm{AD}$.
Sol. Given : A right angled triangle with $\mathrm{AB}=\mathrm{AC}$ and bisector of $\angle \mathrm{A}$ meets BC at D .
To prove: $\mathrm{BC}=2 \mathrm{AD}$
Proof: In right $\triangle \mathrm{ABC}$,

$$
\mathrm{AB}=\mathrm{AC}
$$

[Given]
$\Rightarrow \mathrm{BC}$ is hypotenuse
[\because Hypotenuse is the longest side.]

Now, in $\triangle C A D$ and $\triangle B A D$, we have

$$
\begin{aligned}
\mathrm{AC} & =\mathrm{AB} & & {[\text { Given }] } \\
\angle 1 & =\angle 2 & & {[\because \mathrm{AD} \text { is the bisector of } \angle \mathrm{A}] } \\
\mathrm{AD} & =\mathrm{AD} & & {[\text { Common side }] }
\end{aligned}
$$

So, by SAS criterion of congruence, we have

```
        \(\triangle \mathrm{CAD} \cong \triangle \mathrm{BAD}\)
\(\therefore \quad \mathrm{CD}=\mathrm{BD} \quad[\mathrm{CPCT}]\)
\(\Rightarrow \quad \mathrm{AD}=\mathrm{BD}=\mathrm{CD}\)
```

$[\because$ Mid-point of hypotenuse of a rt. Δ is equidistant from the three vertices of a Δ]
Now, $\quad \mathrm{BC}=\mathrm{BD}+\mathrm{CD}$
$\Rightarrow \quad \mathrm{BC}=\mathrm{AD}+\mathrm{AD} \quad[$ Using (1)]
$\Rightarrow \quad B C=2 A D$
Hence, proved.
7. O is a point in the interior of a square

ABCD such that OAB is an equilateral triangle. Show that $\triangle \mathrm{OCD}$ is an isosceles triangle.
Sol. Given: A square ABCD and $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$.
To prove: $\triangle \mathrm{OCD}$ is an isosceles triangle. Proof: In square ABCD ,

$$
\begin{equation*}
\angle 1=\angle 2 \tag{1}
\end{equation*}
$$

$\left[\because\right.$ Each equal to $\left.90^{\circ}\right]$
Now, in $\triangle \mathrm{OAB}$, we have

$$
\begin{equation*}
\angle 3=\angle 4 \tag{2}
\end{equation*}
$$

Subtracting (2) from (1), we get

$$
\angle 1-\angle 3=\angle 2-\angle 4
$$

$\Rightarrow \quad \angle 5=\angle 6$
Now, in $\triangle \mathrm{DAO}$ and $\triangle \mathrm{CBO}$,

$$
\begin{array}{ll}
\mathrm{AD}=\mathrm{BC} & \text { [Given] } \\
\angle 5=\angle 6 & \text { [Proved above] } \\
\mathrm{OA}=\mathrm{OB} & \text { [Given] }
\end{array}
$$

So, by SAS criterion of congruence, we have

$$
\Delta \mathrm{DAO} \cong \Delta \mathrm{CBO}
$$

$\therefore \quad \mathrm{OD}=\mathrm{OC}$
$\Rightarrow \triangle \mathrm{OCD}$ is an isosceles triangle.
Hence, proved.
8. ABC and DBC are two triangles on the same base BC such that A and D lie on the opposite sides of $\mathrm{BC}, \mathrm{AB}=\mathrm{AC}$ and $\mathrm{DB}=\mathrm{DC}$. Show that AD is the perpendicular bisector of $B C$.

Sol. Given : $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DBC}$ on the same base $B C$. Also, $A B=A C$ and $\mathrm{DB}=\mathrm{DC}$.
To prove : AD is the perpendicular bisector of BC i.e., $\mathrm{OB}=\mathrm{OC}$
Proof: In $\triangle B A D$ and $\triangle C A D$, we have

$$
\begin{array}{rlr}
\mathrm{AB} & =\mathrm{AC} & \\
\mathrm{BD} & =\mathrm{CD} & \\
\mathrm{AD} & =\mathrm{AD} & \\
\text { [Given] }] \\
\end{array}
$$

[Common side]
So, by SSS criterion of
congruence, we have

$$
\begin{aligned}
& \Delta \mathrm{BAD} \cong \triangle \mathrm{CAD} \\
& \therefore \quad \angle 1=\angle 2 \quad \text { [CPCT] } \\
& \text { Now, in } \triangle \mathrm{BAO} \text { and } \triangle \mathrm{CAO} \text {, we have }
\end{aligned}
$$

So, by SAS criterion of congruence, we have

$$
\Delta \mathrm{BAO} \cong \Delta \mathrm{CAO}
$$

$\therefore \quad \mathrm{BO}=\mathrm{CO} \quad[\mathrm{CPCT}]$
and $\quad \angle 3=\angle 4 \quad$ [CPCT]
But, $\angle 3+\angle 4=180^{\circ} \quad$ [Linear pair axiom]
$\Rightarrow \angle 3+\angle 3=180^{\circ}$
$\Rightarrow \quad 2 \angle 3=180^{\circ}$
$\Rightarrow \quad \angle 3=\frac{180^{\circ}}{2}=90^{\circ}$
$\therefore \mathrm{AD}$ is perpendicular bisector of $\mathrm{BC}\left[\because \mathrm{BO}=\mathrm{CO}\right.$ and $\left.\angle 3=90^{\circ}\right]$
Hence, proved.
9. ABC is an isosceles triangle in which $\mathrm{AC}=\mathrm{BC} . \mathrm{AD}$ and BE are respectively two altitudes to the sides BC and AC . Prove that $\mathrm{AE}=\mathrm{BD}$.
Sol. In $\triangle A D C$ and $\triangle B E C$, we have

$\Rightarrow \quad \mathrm{AE}=\mathrm{BD}$
Hence, proved.
10. Prove that sum of any two sides of a triangle is greater than twice the median with respect to the third side.
Sol. Given : $\triangle \mathrm{ABC}$ with median AD .
To prove :
$A B+A C>2 A D$
$\mathrm{AB}+\mathrm{BC}>2 \mathrm{AD}$
$\mathrm{BC}+\mathrm{AC}>2 \mathrm{AD}$
Construction: Produce AD to E such that $\mathrm{DE}=\mathrm{AD}$ and join EC.
Proof: In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{EDC}$,

$$
\begin{aligned}
\mathrm{AD} & =\mathrm{ED} \\
\angle 1 & =\angle 2 \\
\mathrm{DB} & =\mathrm{DC} \quad \text { [Given] }
\end{aligned}
$$

So, by SAS criterion of congruence, we have

$$
\Delta \mathrm{ADB} \cong \Delta \mathrm{EDC}
$$

$\therefore \quad \mathrm{AB}=\mathrm{EC} \quad[\mathrm{CPCT}]$
and, $\quad \angle 3=\angle 4$
[CPCT]
Now, in $\triangle \mathrm{AEC}$, we have
$\mathrm{AC}+\mathrm{CE}>\mathrm{AE}$
[\because Sum of the lengths of any two sides of a triangle must be greater than the third side]
$\Rightarrow \quad \mathrm{AC}+\mathrm{CE}>\mathrm{AD}+\mathrm{DE}$
$\Rightarrow \quad \mathrm{AC}+\mathrm{CE}>\mathrm{AD}+\mathrm{AD}$
$[\because \mathrm{AD}=\mathrm{DE}]$
$\Rightarrow \quad \mathrm{AC}+\mathrm{CE}>2 \mathrm{AD}$
$\Rightarrow \quad \mathrm{AC}+\mathrm{AB}>2 \mathrm{AD} \quad[\because \mathrm{AB}=\mathrm{EC}]$
Hence, proved.
Similarly, $\mathrm{AB}+\mathrm{BC}>2 \mathrm{AD}$ and $\mathrm{BC}+\mathrm{AC}>2 \mathrm{AD}$.
11. Show that in a quadrilateral $\mathrm{ABCD}, \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{BD}+\mathrm{AC})$.

Sol. Given: A quadrilateral ABCD.
To prove :
$\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}+<2(\mathrm{BD}+\mathrm{AC})$
Proof: In $\triangle A O B$, we have
$\Rightarrow \mathrm{OA}+\mathrm{OB}>\mathrm{AB}$
$[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]
In $\triangle \mathrm{BOC}$, we have

$$
\mathrm{OB}+\mathrm{OC}>\mathrm{BC}
$$

...(2) [Same reason]
In $\triangle C O D$, we have
$\mathrm{OC}+\mathrm{OD}>\mathrm{CD}$
...(3) [Same reason]
In $\triangle \mathrm{DOA}$, we have

$$
\mathrm{OD}+\mathrm{OA}>\mathrm{DA}
$$

Adding (1), (2), (3) and (4), we get
$\mathrm{OA}+\mathrm{OB}+\mathrm{OB}+\mathrm{OC}+\mathrm{OC}+\mathrm{OD}+\mathrm{OD}+\mathrm{OA}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$\Rightarrow 2(\mathrm{OA}+\mathrm{OB}+\mathrm{OC}+\mathrm{OD})>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$\Rightarrow 2\{(\mathrm{OA}+\mathrm{OC})+(\mathrm{OC}+\mathrm{OD})\}>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$\Rightarrow 2(\mathrm{AC}+\mathrm{BD})>\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$
$\Rightarrow \mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}<2(\mathrm{BD}+\mathrm{AC})$
Hence, proved.
12. Show that in a quadrilateral $A B C D$.
$A B+B C+C D+D A>A C+B D$
Sol. Given: A quadrilateral ABCD .
To prove: $\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}>\mathrm{AC}+\mathrm{BD}$
Proof: In $\triangle A B C$, we have $A B+B C>A C$

$[\because$ Sum of the lengths of any two sides of a triangle must be greater than the third side]
In $\triangle B C D$, we have

$$
\mathrm{BC}+\mathrm{CD}>\mathrm{BD}
$$

...(2) [Same reason]
In $\triangle \mathrm{CDA}$, we have
$\mathrm{CD}+\mathrm{DA}>\mathrm{AC}$
...(3) [Same reason]
In $\triangle \mathrm{DAB}$, we have

$$
\mathrm{AD}+\mathrm{AB}>\mathrm{BD}
$$

...(4) [Same reason]
Adding (1), (2), (3) and (4), we get
$\mathrm{AB}+\mathrm{BC}+\mathrm{BC}+\mathrm{CD}+\mathrm{CD}+\mathrm{DA}+\mathrm{AD}+\mathrm{AB}>\mathrm{AC}+\mathrm{BD}+\mathrm{AC}+\mathrm{BD}$
$\Rightarrow 2 \mathrm{AB}+2 \mathrm{BC}+2 \mathrm{CD}+2 \mathrm{DA}>2 \mathrm{AC}+2 \mathrm{BD}$
$\Rightarrow 2(\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA})>2(\mathrm{AC}+\mathrm{BD})$
$\Rightarrow A B+B C+C D+D A>A C+B D$
Hence, proved.
13. In a triangle $A B C, D$ is the mid-point of side $A C$ such that $B D=\frac{1}{2} A C$.

Show that $\angle A B C$ is a right angle.
Sol. We have to prove that $\angle \mathrm{ABC}=90^{\circ}$.
As D is the mid-point of AC ,
so, $\quad \mathrm{AD}=\mathrm{DC}$
Also, $\quad \mathrm{BD}=\frac{1}{2} \mathrm{AC}=\mathrm{AD}$
$[\because \mathrm{D}$ is the mid-point of AC$]$
$\therefore \quad \mathrm{BD}=\mathrm{AD}=\mathrm{DC}$

In $\triangle \mathrm{ABD}$, we have

$$
\begin{array}{rlrl}
& & \mathrm{BD} & =\mathrm{AD} \\
\therefore & \angle 1 & =\angle 2
\end{array}
$$

$[\because$ Angles opposite to equal
In $\triangle \mathrm{BDC}$, we have

$$
\begin{array}{rlrl}
& & \mathrm{BD} & =\mathrm{DC}, \\
\therefore & \angle 3 & =\angle 4
\end{array}
$$ sides are equal]

$[\because$ Angles opposite to equal sides are equal]

In $\triangle \mathrm{ABC}$, we have

$$
\begin{aligned}
& & \angle 1+\angle \mathrm{ABC}+\angle 4 & =180^{\circ} \\
\Rightarrow & \angle 1+\angle 2+\angle 3+\angle 4 & =180^{\circ} & \\
\Rightarrow & 2(\angle 2+\angle 3) & =180^{\circ} & {[\because \angle \mathrm{ABC}=\angle 3+\angle 2] } \\
\Rightarrow & \angle 2+\angle 3 & =90^{\circ} & \\
\Rightarrow & \angle \mathrm{ABC} & =90^{\circ} &
\end{aligned}
$$

Hence, proved.
14. In a right triangle, prove that the line segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse.
Sol. ABC is a right triangle, right angled at B and D is the mid-point of $A C$. We have to prove that $\mathrm{BD}=\frac{1}{2} \mathrm{AC}$.
Now, produce BD to E such that $\mathrm{BD}=\mathrm{DE}$. Join EC. In $\triangle \mathrm{ADB}$ and $\triangle \mathrm{CDE}$, we have

$$
\begin{array}{rlrl}
\mathrm{AD} & =\mathrm{CD} \\
& & \angle \mathrm{ADB} & =\angle \mathrm{CDE} \\
\mathrm{BD} & =\mathrm{DE} \\
\therefore & \triangle \mathrm{ADB} & \cong \Delta \mathrm{CDE} \\
\therefore & \mathrm{AB} & =\mathrm{EC} \\
\text { and } & \angle 1 & =\angle 2
\end{array}
$$

$[\because \mathrm{D}$ is the mid-point of AC$]$
[Vertically opposite $\angle \mathrm{s}$]
[By construction]
[By SAS criterion of congruence]
[CPCT]
[CPCT]

But, $\angle 1$ and $\angle 2$ are alternate angles.
$\therefore \quad \mathrm{EC} \| \mathrm{BA}$
Now, EC is parallel to BA and BC is the transversal
$\therefore \quad \angle \mathrm{ABC}+\angle \mathrm{BCE}=180^{\circ}$
$\Rightarrow \quad 90^{\circ}+\angle \mathrm{BCE}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{BCE}=180^{\circ}-90^{\circ}=90^{\circ}$
In $\triangle A B C$ and $\triangle E B C$, we have

$$
\begin{aligned}
\mathrm{BC} & =\mathrm{BC} & & {[\text { Common side }] } \\
\mathrm{AB} & =\mathrm{EC} & & {[\text { Proved above }] } \\
\angle \mathrm{CBA} & =\angle \mathrm{BCE} & & {\left[\because \text { Each }=90^{\circ}\right] }
\end{aligned}
$$

$$
\begin{aligned}
\therefore & \triangle \mathrm{ABC} & \cong \Delta \mathrm{EBC} & \quad \text { [By SAS criterion of congruence] } \\
& \therefore & \mathrm{AC} & =\mathrm{EB} \\
& \Rightarrow & \frac{1}{2} \mathrm{AC} & =\frac{1}{2} \mathrm{~EB} \Rightarrow \frac{1}{2} \mathrm{AC}=\mathrm{BD}
\end{aligned}
$$

Hence, $\mathrm{BD}=\frac{1}{2} \mathrm{AC}$.
15. Two lines l and m intersect at the point O and P is a point on a line n passing through the point O such that P is equidistant from l and m. Prove that n is the bisector of the angle formed by l and m.
Sol. Given : Lines l, m and n intersect at point O . P is a point on line n such that P is equidistant from l and n.
To prove : n is the bisector of \angle QOR.
Proof : In $\triangle \mathrm{OQP}$ and $\triangle \mathrm{ORP}$, we have
$\angle 1=\angle 2$
[\because Each equal to 90°]
$\mathrm{OP}=\mathrm{OP} \quad$ [Common side]
$\mathrm{PQ}=\mathrm{QR} \quad$ [Given]

So, by RHS criterion of congruence, we have

$$
\begin{align*}
& & \Delta \mathrm{OQP} & \cong \Delta \mathrm{ORP} \\
& \therefore & \angle 3 & =\angle 4 \tag{СРСТ}
\end{align*}
$$

So, n is bisector of $\angle \mathrm{QOR}$.
Hence, proved.
16. Line-segment joining the mid-points M and N of parallel sides $A B$ and DC respectively of trapezium ABCD is perpendicular to both the sides $A B$ and $D C$. Prove that $A D=B C$.
Sol. Join MD and CM.
We have, $\angle \mathrm{DNM}=\angle \mathrm{NMB} \quad[$ Alt. $\angle \mathrm{s}]$ $\because \mathrm{AB} \| \mathrm{CD}$
Now, in $\triangle \mathrm{DMN}$ and $\Delta \mathrm{CNM}$,

$$
\mathrm{CN}=\mathrm{DN}
$$

	$[\because \mathrm{N}$ is the mid-point of DC]	
	$\angle \mathrm{DNM}=\angle \mathrm{CNM}$	$\left[\mathrm{Each}=90^{\circ}\right]$
	$\mathrm{NM}=\mathrm{NM}$	[Common side]
\therefore	$\Delta \mathrm{DMN} \cong \triangle \mathrm{CNM}$	[By SAS congruence rule]
\therefore	$\mathrm{DM}=\mathrm{CM}$ and	$\angle \mathrm{NMC}=\angle \mathrm{NMD} . . .(1)[\mathrm{CPCT}]$
Now,	$\angle \mathrm{AMN}=\angle \mathrm{BMN}$	[Each $=90^{\circ}$]
and	$\angle \mathrm{NMD}=\angle \mathrm{NMC}$	[Proved above]
\therefore	$\angle \mathrm{AMN}-\angle \mathrm{NMD}=\angle \mathrm{BMN}$	$-\angle$ NMC [on subtraction]

$$
\begin{array}{rlr}
\Rightarrow & \angle \mathrm{AMD} & =\angle \mathrm{BMC} \\
\mathrm{AM} & =\mathrm{BM} & \ldots(2) \tag{Given}\\
\mathrm{DM} & =\mathrm{CM} & \text { [Given] } \\
& \angle \mathrm{AMD} & =\angle \mathrm{BMC} \\
& & {[\text { From (1)] }} \\
\therefore \mathrm{AMD} & \cong \Delta \mathrm{MBC} & {[\text { By SAS congruence rule] }} \\
\therefore \quad \mathrm{AD} & =\mathrm{BC} & {[\mathrm{CPCT}]}
\end{array}
$$

17. $A B C D$ is a quadrilateral such that diagonal $A C$ bisects the angles A and C. Prove that $A B=A D$ and $C B=C D$.
Ans. Given : A quadrilateral ABCD such that $\angle 1=\angle 2$ and $\angle 3=\angle 4$.
To prove : $\mathrm{AB}=\mathrm{AD}$ and $\mathrm{CB}=\mathrm{CD}$ Proof: In $\triangle A B C$ and $\triangle A D C$, we have

$$
\begin{aligned}
\angle 1 & =\angle 2 & & \text { [Given] } \\
\mathrm{AC} & =\mathrm{AC} & & \text { [Common side] } \\
\angle 3 & =\angle 4 & & \text { [Given] }
\end{aligned}
$$

So, by ASA criterion of congruence, we have

$$
\begin{array}{rlrl}
& \Delta \mathrm{ABC} & \cong \triangle \mathrm{ADC} & \\
\therefore & \mathrm{AB} & =\mathrm{AD} & \\
\text { and } & \mathrm{CB} & =\mathrm{CD} & \\
\text { anCT] } & {[\mathrm{CPCT}]}
\end{array}
$$

Hence, proved.

18. $A B C$ is a right triangle such that $A B=A C$ and bisector of angle C intersects the side $A B$ at D. Prove that $A C+A D=B C$.
Sol. Given : A right triangle ABC, $\mathrm{AB}=\mathrm{AC}$ and CD is the bisector of $\angle \mathrm{C}$.
To prove : $\mathrm{AC}+\mathrm{AD}=\mathrm{BC}$
Construction: Draw $\mathrm{DE} \perp \mathrm{BC}$.
Proof : In right triangle ABC, we have

$$
\mathrm{AB}=\mathrm{AC}
$$

$\therefore \mathrm{BC}$ is hypotenuse
$\Rightarrow \angle \mathrm{A}=90^{\circ}$
In $\triangle D A C$ and $\triangle D E C$, we have
[Given]

$$
\angle \mathrm{A}=\angle 3 \quad\left[\because \text { Each equal to } 90^{\circ}\right]
$$

$$
\angle 1=\angle 2 \quad \text { [Given] }
$$

$$
\mathrm{DC}=\mathrm{DC} \quad[\text { Common side }]
$$

So, by AAS criterion of congruence, we have

$$
\begin{equation*}
\Delta \mathrm{DAC} \cong \Delta \mathrm{DEC} \tag{1}
\end{equation*}
$$

$\therefore \quad \mathrm{DA}=\mathrm{DE}$
and $\mathrm{CA}=\mathrm{CE}$

In $\triangle \mathrm{BAC}$, we have

$$
\Rightarrow \quad \begin{array}{ll}
& \mathrm{AB}=\mathrm{AC} \\
\angle \mathrm{C}=\angle \mathrm{B} & {[\text { Given }]} \\
& {[\because \text { Angles opposite to equal sides of }} \\
& \\
&
\end{array}
$$

Now, $\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+\angle \mathrm{B}+\angle \mathrm{B}=180^{\circ} \quad[\because \angle \mathrm{B}=\angle \mathrm{C}]$
$\Rightarrow \quad 2 \angle \mathrm{~B}=90^{\circ}$
$\Rightarrow \quad \angle \mathrm{B}=\frac{90^{\circ}}{2}=45^{\circ}$
Now, in $\angle \mathrm{BED}$, we have
$\Rightarrow \angle 4+\angle 5+\angle B=180^{\circ} \quad$ [Angle sum property of a triangle]
$\Rightarrow 90^{\circ}+\angle 5+45^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle 5=180^{\circ}-135^{\circ}$
$\Rightarrow \quad \angle 5=45^{\circ}$
$\therefore \quad \angle \mathrm{B}=\angle 5$
$\Rightarrow \quad \mathrm{DE}=\mathrm{BE}$
...(3) [\because Sides opposite to equal angles of a triangle are equal]
From (1) and (3), we get

$$
\begin{equation*}
\mathrm{DA}=\mathrm{DE}=\mathrm{BE} \tag{4}
\end{equation*}
$$

Now,
$\mathrm{BC}=\mathrm{CE}+\mathrm{BE}$
$\Rightarrow \quad \mathrm{BC}=\mathrm{CA}+\mathrm{DA}$
[Using (2), (3) and (4)]
$\Rightarrow \quad \mathrm{BC}=\mathrm{AC}+\mathrm{AD}$
$\Rightarrow \quad \mathrm{AC}+\mathrm{AD}=\mathrm{BC}$
Hence, proved.
19. $A B$ and $C D$ are the smallest and largest sides of a quadrilateral $A B C D$. Out of $\angle \mathrm{B}$ and $\angle \mathrm{D}$ decide which is greater.
Sol. Given: A quadrilateral ABCD in which AB and CD are the smallest and largest sides of quadrilateral $A B C D$. To prove: $\angle \mathrm{B}>\angle \mathrm{D}$
Construction: Join BD.
Proof: In $\triangle \mathrm{ABD}$, we have
$\Rightarrow \quad \mathrm{AB}<\mathrm{AD}$

$[\because \mathrm{AB}$ is the smallest side of quadrilateral ABCD$]$
$\Rightarrow \quad \mathrm{AD}>\mathrm{AB}$
$\Rightarrow \angle \mathrm{ABD}>\angle \mathrm{ADB} \ldots(1)[\because$ Angle opposite to longest side is greater $]$
Again, in $\triangle \mathrm{CBD}$, we have
$C D>B C \quad[\because C D$ is the longest side of quadrilateral $A B C D]$
$\Rightarrow \angle \mathrm{CBD}>\angle \mathrm{BDC} \ldots(2)[\because$ Angle opposite to longest side is greater $]$
Adding (1) and (2), we get

$$
\begin{aligned}
\angle \mathrm{ABD}+\angle \mathrm{CBD}>\angle \mathrm{ADB}+\angle \mathrm{BDC} \\
\Rightarrow \quad \angle \mathrm{ABC}>\angle \mathrm{ADC}
\end{aligned}
$$

$$
\Rightarrow \quad \angle B>\angle D
$$

Hence, proved.
20. Prove that in a triangle, other than an equilateral triangle, angle opposite the longest side is greater than $\frac{2}{3}$ of a right angle.
Sol. Given : A triangle ABC, other than an equilateral triangle.

To prove : $\angle \mathrm{A}>\frac{2}{3} \mathrm{rt}$. \angle
Proof: In $\triangle A B C$, we have

$$
\mathrm{BC}>\mathrm{AB}
$$

$$
\begin{array}{ll}
\Rightarrow & \angle \mathrm{A}>\angle \mathrm{C} \\
& \mathrm{BC}>\mathrm{AC} \\
\Rightarrow & \angle \mathrm{~A}>\angle \mathrm{B}
\end{array}
$$

..(2) $[\because$ In a triangle, angle opposite to the longer side is larger]
Adding (1) and (2), we get

$$
\mathrm{A}+\angle \mathrm{A}>\angle \mathrm{B}+\angle \mathrm{C}
$$

$\Rightarrow \quad 2 \angle \mathrm{~A}>\angle \mathrm{B}+\angle \mathrm{C}$
Now, adding $\angle \mathrm{A}$ on both sides, we get

$$
\begin{array}{lc}
& 2 \angle \mathrm{~A}+\angle \mathrm{A}>\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \\
\Rightarrow & 3 \angle \mathrm{~A}>\angle \mathrm{A}+\angle \mathrm{B}+\angle \mathrm{C} \\
\Rightarrow & 3 \angle \mathrm{~A}>180^{\circ} \quad \quad \text { [Angle sum property of a triangle] } \\
\Rightarrow & \angle \mathrm{A}>\frac{180^{\circ}}{3} \\
\Rightarrow & \angle \mathrm{~A}>\frac{2}{3} \times 90^{\circ} \\
\Rightarrow & \angle \mathrm{A}>\frac{2}{3} \mathrm{rt} . \angle
\end{array}
$$

Hence, proved.
21. $A B C D$ is quadrilateral such that $A B=A D$ and $C B=C D$. Prove that $A C$ is the perpendicular bisector of $B D$.
Sol. Given : A quadrilateral ABCD in which $\mathrm{AB}=\mathrm{AD}$ and $C B=C D$.
To prove : AC is the perpendicular bisector of BD.
Proof: In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$, we have

$$
\begin{aligned}
\mathrm{AB} & =\mathrm{AD} & & {[\text { Given }] } \\
\mathrm{BC} & =\mathrm{CD} & & {[\text { Given }] }
\end{aligned}
$$

$$
\mathrm{AC}=\mathrm{AC} \quad[\text { Common side }]
$$

So, by SSS criterion of congruence, we have
$\triangle \mathrm{ABC} \cong \triangle \mathrm{ADC}$
$\therefore \quad \angle 1=\angle 2 \quad$ [CPCT]
Now, in $\triangle \mathrm{AOB}$ and $\triangle \mathrm{AOD}$, we have

$$
\begin{array}{rlr}
\mathrm{AB} & =\mathrm{AD} & \text { [Given] } \\
\angle 1 & =\angle 2 & \text { [Proved above] } \\
\mathrm{AO} & =\mathrm{AO} & \text { [Common side] }
\end{array}
$$

So, by SAS criterion of congruence, we have

\[

\]

$\therefore \mathrm{AC}$ is perpendicular bisector of $\mathrm{BC}\left[\because \angle 3=90^{\circ}\right.$ and $\left.\mathrm{BO}=\mathrm{DO}\right]$ Hence, proved.

