EXERCISE 7.1

1

Sol. In $\triangle ABC$, we have BC = AB[Given] $\angle A = \angle C$ [:: Angles opposite to equal sides are equal] ... $\angle B = 80^{\circ}$ But. $\therefore \ \angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \angle A + 80^{\circ} + \angle A = 180^{\circ}$ $2\angle A = 100^{\circ}$ \Rightarrow $\angle A = 100^{\circ} \div 2 = 50^{\circ}$ \Rightarrow 80° B4 С Hence, (c) is the correct answer. 5. In $\triangle PQR$, $\angle R = \angle P$ and QR = 4 cm and PR = 5 cm. Then, the length of PQ is (a) 4 cm (b) 5 cm , CN (c) 2 cm $(d) 2.5 \,\mathrm{cm}$ **Sol.** In $\triangle PQR$, we have $\angle R = \angle P$ [Given] PQ = QR... 4 cm [:: Sides opposite to equal angles are equal] Now, OR = 4 cm, therefore, PO = 4 cm. Hence, the length of PQ is 4 cm. Hence, (a) is the correct answer. **6.** D is a point on the side BC of a \triangle ABC such that AD bisects \angle BAC. Then, (a) BD=CD(b) BA > BD(c) BD > BA(d) CD > CAB Sol. In \triangle ADC, D Ext. $\angle ADB > Int. opp. \angle DAC$ $\angle ADB > \angle BAD$ $[:: \angle BAD = \angle DAC]$ *.*.. AB > BD \Rightarrow [:: Side opposite to greater angle is longer.] 7. It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$. Then, which of the following is true? (a) DF = 5 cm, $\angle F = 60^{\circ}$ (b) DF = 5 cm, $\angle E = 60^{\circ}$ (c) DE = 5 cm, $\angle E = 60^{\circ}$ (d) DE = 5 cm, $\angle D = 60^{\circ}$ Sol.

It is given that $\triangle ABC \cong \triangle FDE$ and AB = 5 cm, $\angle B = 40^{\circ}$ and $\angle A = 80^{\circ}$, so $\angle C = 60^{\circ}$.

The sides of $\triangle ABC$ fall on corresponding equal sides of $\triangle FDE$. A corresponds to F, B corresponds to D, and C corresponds to E. So, only DF = 5cm, $\angle E = 60^{\circ}$ is true. Hence, (b) is the correct answer. 8. Two sides of a triangle are of lengths 5 cm and 1.5 cm. The length of the third side of the triangle cannot be (a) $3.6 \,\mathrm{cm}$ (b) $4.1 \,\mathrm{cm}$ (c) $3.8 \,\mathrm{cm}$ (d) $3.4 \,\mathrm{cm}$ Sol. Since sum of any two sides of a triangle is always greater than the third side, so third side of the triangle cannot be 3.4 cm because then 1.5 cm + 3.4 cm = 4.9 < third side (5 cm).Hence, (d) is the correct answer. **9.** In \triangle PQR, if \angle R $> \angle$ Q, then (a) QR > PR(b) PO > PR(c) PO < PR(d) OR < PR**Sol.** In \triangle POR, we have $\angle R \ge \angle O$ R [:: Side opposite to greater angle is longer] \therefore PO>PR Hence, (b) is the correct answer. 10. In triangles ABC and PQR, AB = AC, $\angle C = \angle P$ and $\angle B = \angle Q$. The two triangles are (a) isosceles but not congruent. (b) isosceles and congruent. (c) congruent but not isosceles. (d) neither congruent nor isosceles. Sol. AB = AC[Given] ... $\angle B = \angle C$ [:: Angles opposite to equal sides are equal] R B $\angle B = \angle O$ and $\angle C = \angle P$ [Given] Also, $\angle O = \angle P$... PR = RQ[:: Sides opp. to equal $\angle s$ equal] \Rightarrow Hence, (a) is the correct option.

11. In triangles ABC and DEF, AB = FD and $\angle A = \angle D$. The two triangles will be congruent by SAS axiom. Then,

(a) BC=EF (b) AC=DE (c) AC=EF (d) BC=DESol. (b) AC=DE.

4 cm and 3 cm = 4 cm + 3 cm = 7 cm,

which is equal to the length of third side, i.e., 7 cm.

Hence, it is not possible to construct a triangle with lengths of sides 4 cm, 3 cm and 7 cm.

- 6. It is given that $\triangle ABC \cong \triangle RPQ$. Is it true to say that BC = QR? Why?
- **Sol.** It is false that BC = QR because BC = PQ as $\triangle ABC \cong \triangle RPQ$.
 - 7. It is given that $\triangle PQR \cong \triangle EDF$, then is it true to say that PR = EF? Give reasons for your answer.
- Sol. Yes, PR = EF because they are the corresponding sides of \triangle PQR and \triangle EDF.
 - 8. In $\triangle PQR$, $\angle P = 70^{\circ}$ and $\angle R = 30^{\circ}$. Which side of this triangle is the longest? Give reasons for your answer.
- **Sol.** In \triangle PQR, we have

$$\angle Q = 180^{\circ} - (\angle P + \angle R)$$

= 180° - (70° + 30°) = 180° - 100° = 80°

Now, in \triangle PQR, \angle Q is the larger (greater) and side opposite to greater angle is longer.

Hence, PR is the longest side.

- **9.** AD is a median of the triangle ABC. Is it true that AB + BC + CA > 2AD? Give reason for your answer.
- **Sol.** In \triangle ABD, we have

 $AB+BD > AD \qquad ...(1)$ [:: Sum of the lengths of any two sides of a triangle must be greater than the third side] Now, in $\triangle ADC$, we have $AC+CD > AD \qquad ...(2)$ $B \qquad D \qquad C$

[: Sum of the lengths of any two sides of a triangle must be greater than the third side]

Adding (1) and (2), we get AB+BD+CD+AC>2AD $\rightarrow AB+BC+CA>2AD$

- ⇒ AB+BC+CA>2AD [∵ BD=CD as AD is median of ΔABC]
 10. M is a point on side BC of a triangle ABC such that AM is the bisector of ∠BAC. Is it true to say that perimeter of the triangle is greater than 2AM? Give reason for your answer.
- Sol. We have to prove that

$$AB + BC + AC > 2 AM.$$

As sum of any two sides of a triangle is greater than the third side, so in Δ ABM, we have

$$AB + BM > AM$$
 ...(1)

and in $\triangle ACM$, AC + CM > AM ...(2) Adding (1) and (2), we get AB + BM + AC + CM > 2AM or AB + (BM + CM) + AC > 2AM $\Rightarrow AB + BC + AC > 2AM$

Hence, it is true to say that perimeter of the triangle is greater than 2AM.

- **11.** Is it possible to construct a triangle with lengths of sides as 9 cm, 7 cm and 17 cm? Give reason for your answer.
- **Sol.** No, it is not possible to construct a triangle whose sides are 9 cm, 7cm and 17cm because

 $9 \,\mathrm{cm} + 7 \,\mathrm{cm} = 16 \,\mathrm{cm} < 17 \,\mathrm{cm}$

where as sum of any two sides of a triangle is always greater than the third side.

- **12.** Is it possible to construct a triangle with lengths of its sides as 8 cm, 7 cm and 4 cm? Give reason for your answer.
- **Sol.** Yes, it is possible to construct a triangle with lengths of sides as 8 cm, 7 cm and 4 cm as sum of any two sides of a triangle is greater than the third side.

EXERCISE 7.3

1. ABC is an isosceles triangle with AB = AC and BD and CE are its two medians. Show that BD = CE.

To prove: $\triangle ABD \cong \triangle ACE$

Proof : In $\triangle ADE$, we have AD = AE [Given] $\angle 2 = 1$ \Rightarrow [:: Angles opposite to equalsides of a triangle are equal] Now, $\angle 1 + \angle 3 = 180^{\circ}$...(1) [Linear pair axiom] $\angle 2 + \angle 4 = 180^{\circ}$...(2) 2 [Linear pair axiom] D Е From equations (1) and (2), we get ' $\angle 1 + \angle 3 = \angle 2 + \angle 4$ $\angle 3 = \angle 4$ $[\because \angle 1 = \angle 2]$ \Rightarrow Now, in $\triangle ABD$ and $\triangle ACE$, we have AD = AE[Given] $\angle 3 = \angle 4$ [Proved above] BD = CE[Given] So, by SAS criterion of congruence, we have $\Delta ABD \cong \Delta ACE$ Hence, proved. 3. CDE is an equilateral triangle formed on a side CD of Aa square ABCD (See fig.). Show that $\triangle ADE \cong \triangle BCE$. Sol. Given : An equilateral triangle CDE formed on side CD of square ABCD. ъЦ To prove : $\triangle ADE \cong \triangle BCE$ 3 Proof: In square ABCD, we have $\angle 1 = \angle 2$ $\dots (1) [\because Each = 90^{\circ}]$ Now, in ΔDCE , we have $\dots(2)$ [:: Each = 60°] $\angle 3 = \angle 4$ Adding (1) of (2), we get $\angle 1 + \angle 3 = \angle 2 + \angle 4$ $\angle ADE = \angle BCE$ \Rightarrow Now, in \triangle ADE and \triangle BCE, we have DE = CE[Sides of an equilateral triangle are equal] $\angle ADE = \angle BCE$ [Proved above] AD = BC[Sides of a square are equal in length] So, by SAS criterion of congruence, we have $\Delta ADE \cong \Delta BCE$ Hence, proved 4. In the given figure, $BA \perp AC$, $DE \perp DF$ such that BA = DE and BF = EC.

- 9. Bisectors of the angles B and C of an isosceles triangle with AB = AC intersect each other at O. BO is produced to a point M. Prove that $\angle MOC = \angle ABC$.
- Sol. Bisectors of the angles B and C of an isosceles triangle ABC with AB = AC intersect each other at O. BO is produced to a point M.

- 11. In the given figure, AD is the bisector of $\angle BAC$. Prove that AB > BD.
- Sol. Since exterior angle of a triangle is greater than either of the interior opposite angles, therefore, in $\triangle ACD$, Ext. $\angle 3 > \angle 2 \Rightarrow \angle 3 > \angle 1$ [\therefore AD is the bisector of $\angle BAC$, so $\angle 1 = \angle 2$] Now, in $\triangle ABD$, we have

Hence, AB > BD. [: In a triangle, side opposite to greater angle is longer]

EXERCISE 7.4

1. Find all the angles of an equilateral triangle. **Sol.** In \triangle ABC, we have AB = AC $\angle C = \angle B$...(1) \rightarrow [:: Angles opposite to equalsides of a triangle are equal] BC = ACR $\angle A = \angle B$ \Rightarrow ...(2) [\cdot Angles opposite to equal sides of a triangle are equal] $\angle A + \angle B + \angle C = 180^{\circ}$ [\cdot Angle sum property of a triangle] Now. $\angle A + \angle A + \angle A = 180^{\circ}$ [From (1) and (2)]⇒ $3\angle A = 180^{\circ}$ \Rightarrow $\angle A = \frac{180^{\circ}}{3} = 60^{\circ}$ \Rightarrow $\angle A = \angle B = \angle C = 60^{\circ}$... 2. The image of an object placed at a point A before a plane mirror LM is seen at the point B by an observer at D as shown in the given figure. M Prove that the image is as far behind the mirror as the object is in front of the mirror. [Hint: CN is normal to the mirror. Ν Also, angle of incidence = angle of reflection]. **Sol.** Let AB intersect LM at O. We have to prove that AO = BO. Now, $\angle i = \angle r$...(1) [:: Angle of incidence = Angle of reflection]

4. P is a point on the bisector of $\angle ABC$. If the line through P, parallel to BA meet BC at Q, prove that BPQ is an isosceles triangle. Sol. We have to prove that BPQ is an isosceles triangle. $\angle 1 = \angle 2$...(1) [:: BP is the bisector of $\angle ABC$] Now, PQ is parallel to BA and BP cuts them $\angle 1 = \angle 3$ $[Alt. \angle s]...(2)$ From (1) and (2), we get $\angle 2 = \angle 3$ In \triangle BPQ, we have $\angle 2 = \angle 3$ [Proved above] PO = BQ[:: Sides opp. to equal angles are equal] *.*.. Hence, BPQ is an isosceles triangle. **5.** ABCD is a quadrilateral in which Α AB = BC and AD = CD. Show that BD bisects both the angles ABC and ADC. **Sol.** In \triangle ABD and \triangle CBD, we have AB = BC[Given] AD = CD[Given] BD = BD[Common side] $\therefore \Delta ABD \cong \Delta CBD$ [By SSS congruence rule] С \Rightarrow $\angle 1 = \angle 2$ [CPCT] and $\angle 3 = \angle 4$ Hence, BD bisects both the angles ABC and ADC. **6.** ABC is a right triangle with AB = AC. Bisector of $\angle A$ meets BC at D. Prove that BC = 2AD. Sol. Given : A right angled triangle with AB = AC and bisector of $\angle A$ meets BC at D. To prove: BC = 2 ADD Proof : In right \triangle ABC, AB = AC[Given] \Rightarrow BC is hypotenuse [\cdot Hypotenuse is the longest side.] *.*•. $\angle BAC = 90^{\circ}$

Now, in $\triangle CAD$ and $\triangle BAD$, we have AC = AB[Given] $\angle 1 = \angle 2$ $[:: AD is the bisector of \angle A]$ AD = AD[Common side] So, by SAS criterion of congruence, we have $\Delta CAD \cong \Delta BAD$ CD = BD[CPCT] ... AD = BD = CD \Rightarrow ...(1) [:: Mid-point of hypotenuse of a rt. Δ is equidistant from the three vertices of a Δ] Now, BC = BD + CDBC = AD + AD \Rightarrow [Using(1)] \Rightarrow BC = 2ADHence, proved. 7. O is a point in the interior of a square D ABCD such that OAB is an equilateral \cap triangle. Show that $\triangle OCD$ is an isosceles triangle. Sol. Given: A square ABCD and OA = OB = AB.To prove: $\triangle OCD$ is an isosceles triangle. Proof: In square ABCD. $\angle 1 = \angle 2$...(1) 5 6 60° 60 [:: Each equal to 90°] Now, in $\triangle OAB$, we have А $\angle 3 = \angle 4$...(2) [:: Each equal to 60°] Subtracting (2) from (1), we get $\angle 1 - \angle 3 = \angle 2 - \angle 4$ $\angle 5 = \angle 6$ \Rightarrow Now, in ΔDAO and ΔCBO , AD = BC[Given] $\angle 5 = \angle 6$ [Proved above] OA = OB[Given] So, by SAS criterion of congruence, we have ΔDAO≅ΔCBO OD = OC*.*.. $\Rightarrow \Delta OCD$ is an isosceles triangle. Hence, proved.

8. ABC and DBC are two triangles on the same base BC such that A and D lie on the opposite sides of BC, AB = AC and DB = DC. Show that AD is the perpendicular bisector of BC.

Sol. Given : \triangle ABC and \triangle DBC on the same base BC. Also, AB = AC and DB = DC.2 To prove : AD is the perpendicular bisector of BC i.e., OB = OCProof : In \triangle BAD and \triangle CAD, we \cap have AB = AC[Given] BD = CD[Given] AD = AD[Common side] So, by SSS criterion of congruence, we have Ď $\Delta BAD \cong \Delta CAD$ $\angle 1 = \angle 2$ [CPCT] *.*.. Now, in $\triangle BAO$ and $\triangle CAO$, we have AB = AC[Given] $\angle 1 = \angle 2$ [Proved above] AO = AO[Common side] So, by SAS criterion of congruence, we have $\Delta BAO \cong \Delta CAO$ *.*.. BO = CO[CPCT] $\angle 3 = \angle 4$ and [CPCT] But, $\angle 3 + \angle 4 = 180^{\circ}$ [Linear pair axiom] $\angle 3 + \angle 3 = 180^{\circ}$ \Rightarrow $2 \angle 3 = 180^{\circ}$ \Rightarrow $\angle 3 = \frac{180^{\circ}}{2} = 90^{\circ}$ \Rightarrow : AD is perpendicular bisector of BC [: BO = CO and $\angle 3 = 90^{\circ}$] Hence, proved. 9. ABC is an isosceles triangle in which AC = BC. AD and BE are respectively two altitudes to the sides BC and AC. Prove that AE = BD.

Sol. In \triangle ADC and \triangle BEC, we have

...

OB + OC > BC...(2) [Same reason] In $\triangle COD$, we have OC + OD > CD...(3) [Same reason] In ΔDOA , we have ...(4) [Same reason] OD + OA > DAAdding (1), (2), (3) and (4), we get OA + OB + OB + OC + OC + OD + OD + OA > AB + BC + CD + DA $\Rightarrow 2(OA + OB + OC + OD) > AB + BC + CD + DA$ $\Rightarrow 2\{(OA+OC)+(OC+OD)\} > AB+BC+CD+DA$ $\Rightarrow 2(AC+BD) > AB+BC+CD+DA$ \Rightarrow AB+BC+CD+DA<2(BD+AC) Hence, proved. D **12.** Show that in a quadrilateral ABCD. AB+BC+CD+DA>AC+BD**Sol.** Given : A quadrilateral ABCD. To prove : AB + BC + CD + DA > AC + BDProof : In $\triangle ABC$, we have AB + BC > AC...(1) [:: Sum of the lengths of any two sides of a triangle must be greater than the third side] In \triangle BCD, we have BC + CD > BD...(2) [Same reason] In \triangle CDA, we have ...(3) [Same reason] CD + DA > ACIn ΔDAB , we have AD + AB > BD...(4) [Same reason] Adding (1), (2), (3) and (4), we get AB + BC + BC + CD + CD + DA + AD + AB > AC + BD + AC + BD \Rightarrow 2AB+2BC+2CD+2DA>2AC+2BD $\Rightarrow 2(AB+BC+CD+DA) > 2(AC+BD)$ \Rightarrow AB+BC+CD+DA>AC+BD Hence, proved. 13. In a triangle ABC, D is the mid-point of side AC such that $BD = \frac{1}{2} AC$. Show that $\angle ABC$ is a right angle. **Sol.** We have to prove that $\angle ABC = 90^{\circ}$. As D is the mid-point of AC, so, AD = DC

Also,
$$BD = \frac{1}{2}AC = AD$$
 [:: D is the mid-point of AC]
:. $BD = AD = DC$

In
$$\triangle ABC$$
, we have
 $\angle 1 + \angle ABC + \angle 4 = 180^{\circ}$
 $\Rightarrow \angle 1 + \angle 2 + \angle 3 + \angle 4 = 180^{\circ}$
 $\Rightarrow 2(\angle 2 + \angle 3) = 180^{\circ}$
 $\Rightarrow \angle 2 + \angle 3 = 90^{\circ}$
 $\Rightarrow \angle ABC = 90^{\circ}$
[Solution of the second secon

Hence, proved.

- 14. In a right triangle, prove that the line segment joining the mid-point of the hypotenuse to the opposite vertex is half the hypotenuse.Sel ABC is a right triangle right angled at B and D is A sector F.
- Sol. ABC is a right triangle, right angled at B and D is A the mid-point of AC. We have to prove that $BD = \frac{1}{2}AC.$ Now, produce BD to E such that BD = DE. Join EC. In \triangle ADB and \triangle CDE, we have В [:: D is the mid-point of AC] AD = CD $\angle ADB = \angle CDE$ [Vertically opposite $\angle s$] BD = DE[By construction] $\Delta ADB \cong \Delta CDE$ [By SAS criterion of congruence] ... AB = EC... [CPCT] $\angle 1 = \angle 2$ [CPCT] and But, $\angle 1$ and $\angle 2$ are alternate angles. EC || BA ... Now, EC is parallel to BA and BC is the transversal $\angle ABC + \angle BCE = 180^{\circ}$ $90^{\circ} + \angle BCE = 180^{\circ}$ \Rightarrow $\angle BCE = 180^{\circ} - 90^{\circ} = 90^{\circ}$ \Rightarrow In \triangle ABC and \triangle EBC, we have BC = BC[Common side] AB = EC[Proved above] $\angle CBA = \angle BCE$ $[:: Each = 90^{\circ}]$

$$\therefore \quad \Delta ABC \cong \Delta EBC \qquad [By SAS criterion of congruence]$$
$$\therefore \quad AC = EB \qquad [CPCT]$$
$$\Rightarrow \quad \frac{1}{2}AC = \frac{1}{2}EB \Rightarrow \frac{1}{2}AC = BD$$

$$\Rightarrow \qquad \frac{1}{2}AC = \frac{1}{2}EB \Rightarrow \frac{1}{2}AC = E$$

Hence, $BD = \frac{1}{2} AC$.

15. Two lines *l* and *m* intersect at the point O and P is a point on a line *n* passing through the point O such that P is equidistant from *l* and *m*. Prove that *n* is the bisector of the angle formed by *l* and *m*.

Hence, proved.

16. Line-segment joining the mid-points M and N of parallel sides AB and DC respectively of trapezium ABCD is perpendicular to both the sides AB and DC. Prove that AD = BC.

Sol. Join MD and CM. $[Alt. \angle s]$ We have, $\angle DNM = \angle NMB$:: AB || CD Now, in ΔDMN and ΔCNM , 90° CN = DN[:: N is the mid-point of DC] $\angle DNM = \angle CNM$ $[Each = 90^{\circ}]$ NM = NM[Common side] $\Delta DMN \cong \Delta CNM$ [By SAS congruence rule] $DM = CM and \angle NMC = \angle NMD ...(1)[CPCT]$ *.*.. Now. ∠AMN = ∠BMN $[Each = 90^{\circ}]$ ∠NMD = ∠NMC and [Proved above] $\angle AMN - \angle NMD = \angle BMN - \angle NMC$ *.*.. [on subtraction]

In $\triangle BAC$, we have AB = AC[Given] $\angle C = \angle B$ [·· Angles opposite to equal sides of \Rightarrow a triangle are equal] Now, $\angle A + \angle B + \angle C = 180^{\circ}$ [Angle sum property of a triangle] $\Rightarrow 90^{\circ} + \angle B + \angle B = 180^{\circ}$ $[:: \angle B = \angle C]$ $2 \angle B = 90^{\circ}$ \Rightarrow $\angle B = \frac{90^{\circ}}{2} = 45^{\circ}$ \Rightarrow Now, in $\angle BED$, we have $\angle 4 + \angle 5 + \angle B = 180^{\circ}$ [Angle sum property of a triangle] \Rightarrow $90^{\circ} + \angle 5 + 45^{\circ} = 180^{\circ}$ \Rightarrow $\angle 5 = 180^{\circ} - 135^{\circ}$ ⇒ $\angle 5 = 45^{\circ}$ \Rightarrow *.*.. $\angle B = \angle 5$ DE = BE \dots (3) [:: Sides opposite to equal angles \Rightarrow of a triangle are equal] From (1) and (3), we get DA = DE = BE...(4) BC = CE + BENow, BC = CA + DA[Using (2), (3) and (4)] \Rightarrow BC = AC + AD \Rightarrow AC + AD = BC \Rightarrow Hence, proved. **19.** AB and CD are the smallest and largest sides of a quadrilateral ABCD. Out of $\angle B$ and $\angle D$ decide which is greater. Sol. Given: A quadrilateral ABCD in which AB and CD are the smallest and largest sides of quadrilateral ABCD. A To prove: $\angle B > \angle D$ Construction: Join BD. Proof: In $\triangle ABD$, we have AB < AD \Rightarrow [:: AB is the smallest side of quadrilateral ABCD] AD > AB \Rightarrow $\Rightarrow \angle ABD > \angle ADB \dots (1)$:: Angle opposite to longest side is greater Again, in $\triangle CBD$, we have CD > BC[:: CD is the longest side of quadrilateral ABCD] $\Rightarrow \angle CBD \ge \angle BDC \dots (2)$ [:: Angle opposite to longest side is greater] Adding (1) and (2), we get $\angle ABD + \angle CBD > \angle ADB + \angle BDC$ $\angle ABC > \angle ADC$ \Rightarrow

$$\Rightarrow \angle B > \angle D$$

Hence, proved.

20. Prove that in a triangle, other than an equilateral triangle, angle opposite

the longest side is greater than
$$\frac{2}{3}$$
 of a right angle.

Sol. Given : A triangle ABC, other than an equilateral triangle.

To prove : $\angle A > \frac{2}{3}$ rt. \angle Proof : In $\triangle ABC$, we have BC> AB

⇒

⇒

BC > AC $\angle A > \angle B$

 $\angle A > \angle C$

...(1) [:: In a triangle, angle opposite to the longer side is larger]

...(2) [: In a triangle, angle opposite to the longer side is larger]

Adding (1) and (2), we get $A + \angle A > \angle B + \angle C$ $2\angle A > \angle B + \angle C$ \Rightarrow Now, adding $\angle A$ on both sides, we get $2 \angle A + \angle A > \angle A + \angle B + \angle C$ $3 \angle A > \angle A + \angle B + \angle C$ \Rightarrow $3\angle A > 180^{\circ}$ [Angle sum property of a triangle] \Rightarrow $\angle A > \frac{180^{\circ}}{3}$ \Rightarrow $\angle A > \frac{2}{3} \times 90^{\circ}$ \Rightarrow $\angle A > \frac{2}{3}$ rt. \angle \Rightarrow

Hence, proved.

- **21.** ABCD is quadrilateral such that AB = AD and CB = CD. Prove that AC is the perpendicular bisector of BD.
- **Sol.** Given : A quadrilateral ABCD in which AB = AD and CB = CD.

To prove : AC is the perpendicular bisector of BD.

Proof : In \triangle ABC and \triangle ADC, we have

AB = AD [Given] BC = CD [Given]

AC = AC [Common side] So, by SSS criterion of congruence, we have $\Delta ABC \cong \Delta ADC$ ÷ $\angle 1 = \angle 2$ [CPCT] Now, in $\triangle AOB$ and $\triangle AOD$, we have AB = AD[Given] $\angle 1 = \angle 2$ [Proved above] AO = AO [Common side] So, by SAS criterion of congruence, we have $\Delta AOB \cong \Delta AOD$ *:*. BO = DO[CPCT] and $\angle 3 = \angle 4$ [CPCT] $\angle 3 + \angle 4 = 180^{\circ}$ But, [Linear pair axiom] $\angle 3 + \angle 3 = 180^{\circ}$ $[:: \angle 3 = \angle 4]$ \Rightarrow $2 \angle 3 = 180^{\circ}$ \Rightarrow $\angle 3 = \frac{180^{\circ}}{2} = 90^{\circ}$ \Rightarrow : AC is perpendicular bisector of BC [:: $\angle 3 = 90^\circ$ and BO = DO]

Hence, proved.