Applied Mathematics Subject Code – 241 Classes XI-XII (2025 – 26)

Secondary School Education prepares students to explore future career options after graduating from schools. Mathematics is an important subject that helps students to choose various fields of their choices. Mathematics is widely used in higher studies as an allied subject in the field of Economics, Commerce, Social Sciences and many others. It has been observed that the syllabus of Mathematics in senior secondary grades meant for science subjects may not be appropriate for the students who wish to pursue Commerce or Social Science-based subjects in university education. By keeping this in mind, one more elective course in the mathematics syllabus is developed for Senior Secondary classes with an aim to provide students relevant experience in Mathematics that can be used in fields other than Physical Sciences.

This course is designed to develop substantial mathematical skills and methods needed in other subject areas. Topics covered in two years aim to enable students to use mathematical knowledge in the field of business, economic and social sciences. It aims to promote appreciation of mathematical power and simplicity for its countless applications in diverse fields. The course continues to develop mathematical language and symbolism to communicate and relate everyday experiences mathematically. In addition, it reinforces the logical reasoning skills of formulating and validating mathematical arguments, framing examples, finding counterexamples. It encourages students to engage in mathematical investigations and to build connections within mathematical topics and with other disciplines. The course prepares students to use algebraic methods as a means of representation and as a problem-solving tool. It also enables students to interpret two-dimensional geometrical figures using algebra and to further deduce properties of geometrical figures in a coordinate system. The course content will help students to develop a sound understanding of descriptive and inferential statistics which they can use to describe and analyze a given set of data and to further make meaningful inferences out of it. Data based case studies from the field of business, economics, psychology, education, biology and census data will be used to appreciate the power of data in contemporary society.

It is expected that the subject is taught connecting concepts to the applications in various fields. The objectives of the course areas are as follows:

Objectives:

- a) To develop an understanding of basic mathematical and statistical tools and their applications in the field of commerce (business/ finance/economics) and social sciences.
- b) To model real-world experiences/problems into mathematical expressions using numerical/algebraic/graphical representation.
- c) To make sense of the data by organizing, representing, interpreting, analysing, and making meaningful inferences from real-world situations.
- d) To develop logical reasoning skills and apply the same in simple problem-solving.
- e) To reinforce mathematical communication by formulating conjectures, validating logical arguments and testing hypothesis.
- f) To make connections between Mathematics and other disciplines.

Grade XI (2025-26)

Number of Paper:1Time:3 HoursMax Marks:80

No.	Units	Marks	
I	Numbers, Quantification and	09	
	Numerical Applications		
II	Algebra	15	
	Mathematical Reasoning	06	
IV	Calculus	10	
V	Probability	08	
VI	Descriptive Statistics	12	
VII	Basics of Financial Mathematics	15	
VIII	Coordinate Geometry	05	
	Total		
	Internal Assessment	20	

	<u>CLASS- XI</u>			
SI. No.	Contents	Learning Outcomes: Students will be able to	Notes / Explanation	
UNIT	-1 NUMBERS	, QUANTIFICATION AND NUM	ERICAL APPLICATIONS	
Numb	pers & Quantific	ation		
1.1	Binary Numbers	 Express decimal numbers in binary system Express binary numbers in decimal system 	 Definition of number system (decimal and binary) Conversion from decimal to binary system and vice - versa 	
1.2	Indices, Logarithm and Antilogarithm	 Relate indices and logarithm /antilogarithm Find logarithm and antilogarithms of given Number 	 Applications of rules of indices Introduction of logarithm and antilogarithm Common and Natural logarithm 	
1.3	Laws and properties of logarithms	 Enlist the laws and properties of logarithms Apply laws of logarithm 	 Fundamental laws of logarithm 	
1.4	Simple applications of logarithm and Antilogarithm	 Use logarithm in different applications 	 Express the problem in the form of an equation and apply logarithm/ antilogarithm 	
Nume	erical Applicatio	ns		
1.5	Clock	 Evaluate the angular value of a minute Calculate the angle formed between two hands of clock at given time Calculate the time for which hands of clock Meet 	 Number of rotations of minute hand / hour hand of a clock in a day Number of times minute hand and hour hand coincides in a day 	
1.6	Calendar	 Determine Odd days in a month/ year/ century Decode the day for the given date 	 Definition of odd days Odd days in a year/ century. Day corresponding to a given date 	
1.7	Time, Work and Distance	 Establish the relationship between work and time Compare the work done by the individual / group w.r.t. time Calculate the time taken/ distance covered/ Work done from the given data 	 Basic concept of time and work Problems on time taken / distance covered / work done 	

1.8	Seating arrangement	 Create suitable seating plan/ draft as per given conditions (Linear/circular) Locate the position of a person in a seating arrangement 	 Linear and circular seating arrangement Position of a person in a seating arrangement
UNIT	-2 ALGEBRA		
Sets			
2.1	Introduction to sets – definition	 Define set as well- defined collection of objects 	 Definition of a Set Examples and Non-examples of Set
2.2	Representation of sets	 Represent a set in Roster form and Set builder form 	 Write elements of a set in Set Builder form and Roster Form Convert a set given in Roster form into Set builder form and vice-versa
2.3	Types of sets and their notations	 Identify different types of sets on the basis of number of elements in the set Differentiate between equal set and equivalence set 	 Types of Sets: Finite Set, Infinite Set, Empty Set, Singleton Set
2.4	Subsets	 Enlist all subsets of a set Find number of subsets of a given set Find number of elements of a power set 	 Subset of a given set Familiarity with terms like Superset, Improper subset, Universal set, Power set
2.5	Intervals	 Express subset of real numbers as intervals 	 Open interval, closed interval, semi open interval and semi closed interval
2.6	Venn diagrams	 Apply the concept of Venn diagram to understand the relationship between sets Solve problems using Venn diagram 	 Venn diagrams as the pictorial representation of relationship between sets Practical Problems based on Venn Diagrams

2.7	Operations on sets	 Perform operations on sets to solve practical problems 	 Operations on sets include i) Union of sets ii) Intersection of sets iii) Difference of sets iv) Complement of a set v) De Morgan's Laws
Relatio	ons		
2.8	Ordered pairs Cartesian product of two sets	 Explain the significance of specific arrangement of elements in a pair Write Cartesian product of two sets Find the number of elements in a Cartesian product of two sets 	 Ordered pair, order of elements in an ordered pair and equality of ordered pairs Cartesian product of two non- empty sets
2.9	Relations	 Express relation as a subset of Cartesian product Find domain and range of a relation 	 Definition of Relation, examples pertaining to relations in the real number system
Seque	nces and Series		
2.10	Sequence and Series	Differentiate between sequence and series	• Sequence: $a_1, a_2, a_3,, a_n$ • Series: $a_1 + a_2 + a_3 + + a_n$
2.11	Arithmetic Progression	 Identify Arithmetic Progression (AP) Establish the formulae of finding nth term and sum of n terms Solve application problems based on AP Find arithmetic mean (AM) of two positive numbers 	• General term of A P: $t_n = a + (n - 1)d$ • Sum of <i>n</i> terms of A P: $S_n = \frac{n}{2}[2a + (n - 1)d]$ • AM of <i>a</i> and $b = \frac{a+b}{2}$
2.12	Geometric Progression	Identify Geometric Progression (GP)	• General term of GP: $t_n = a r^{n-1}$
		 Derive the nth term and sum of n terms of a given GP 	• Sum of <i>n</i> terms of A P: $S_n = \frac{a(r^n - 1)}{r - 1}$
		 Solve problems based on applications of GP 	• Sum of infinite terms of GP = $\frac{a}{1-r}$, where $-1 < r < 1$
		 Find geometric mean (GM) of two positive numbers Solve problems based 	• Geometric mean of a and $b = \sqrt{ab}$ • For two positive numbers a and b.
		on relation between AM and GM	AM \geq GM i.e., $\frac{a+b}{2} \geq \sqrt{ab}$

2.13	Applications of AP and GP	 Apply appropriate formulas of AP and GP to solve application problems 	Applications based onEconomy StimulationThe Virus spread
Perm	utations and Co	mbinations	
2.14	Factorial	 Define factorial of a number Calculate factorial of a number 	 Definition of factorial: n! = n(n-1)(n-2) 3.2.1 Usage of factorial in counting principles
2.15	Fundamental Principle of Counting	 Appreciate how to count without counting 	 Fundamental Principle of Addition Fundamental Principle of Multiplication
2.16	Permutations	 Define permutation Apply the concept of permutation to solve simple problems 	• Permutation as arrangement of objects in a definite order taken some or all at a time. Theorems under different conditions resulting in ${}^{n}P_{r} = \frac{n!}{(n-r)!}$ or n^{r} or $\frac{n!}{n_{1}!n_{2}!n_{k}!}$ arrangements.
2.17	Combinations	 Define combination Differentiate between permutation and combination Apply the formula of combination to solve the related problems 	•The number of combinations of n different objects taken r at a time is given by ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$ Some results on Combinations: • ${}^{n}C_{0} = 1 = {}^{n}C_{n}$ • ${}^{n}C_{a} = {}^{n}C_{b} \Rightarrow a = b \text{ or } a + b = n$ • ${}^{n}C_{r} = {}^{n}C_{n-r}$ • ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
UNIT	-3 MATHEM	ATICAL REASONING	
3.1	Logical reasoning	 Solve logical problems involving odd man out, syllogism, blood relation and coding decoding 	 Odd man out Syllogism Blood relations Coding Decoding
UNIT –	4 CALCULUS		
4.1	Functions	 Identify dependent and independent variables Define a function using dependent and independent variable 	 Dependent variable and independent variable Function as a rule or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable)

4.2	Domain and Range of a function	 Define domain, range and co-domain of a given function 	 Domain as a set of all values of independent variable Co-domain as a set of all values of dependent variable Range of a function as set of all possible resulting values of dependent variable
4.3	Types of functions and their graphical representation	 Define various types of functions Identify domain, co-domain and range of the function Representation of function graphically 	 Following types of functions with definitions, characteristics and their graphs. Constant function, Identity function, Polynomial function, Rational function, Composite function, Logarithm function, Exponential function, Modulus function, Algebraic function.
4.4	Concepts of limits and continuity of a function	 Define limit of a function Solve problems based on the algebra of limits Define continuity of a function 	 Left hand limit, Right hand limit, Limit of a function, Continuity of a function
4.5	Instantaneous rate of change	 Define instantaneous rate of change 	• The ratio $\frac{\Delta y}{\Delta x} = \frac{f(x+\Delta x)-f(x)}{\Delta x}$ as instantaneous rate of change, where Δy is change in y and Δx is change in x at any instant.
4.6	Differentiation as a process of finding derivative	 Find the derivative of the functions 	 Derivatives of functions (non- trigonometric only)
4.7	Derivatives of algebraic functions using Chain Rule	 Find the derivative of function of a function 	• If $y = f(u)$ where $u = g(x)$ then differential coefficient of y w.r.t x is $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$
UNIT	-5 PROBABIL	ITY	
5.1	Introduction	 Appreciate the use of probability in daily life situations 	 Probability as quantitative measure of uncertainty Use of probability in determining the insurance premium, weather forecasts etc.
5.2	Random experiment and sample space	Define random experiment and sample space with suitable examples	Sample space as set of all possible outcomes
5.3	Event	 Define an event Recognize and differentiate different types of events and find their probabilities 	• Types of Events: Impossible and sure event, Independent and dependent event, mutually exclusive and exhaustive event.

5.4	Conditional Probability	 Define the concept of conditional probability Apply reasoning skills to solve problems based on conditional probability 	• Conditional Probability of event E given that F has occurred is: $P(E F) = \frac{P(E \cap F)}{P(F)}, P(F) \neq 0$
UNIT-	6 DESCRIP	TIVE STATISTICS	
6.1	Data Interpretation – Measure of Dispersion	 Understand meaning of dispersion in a data set Differentiate between range, quartile deviation, mean deviation and standard deviation Calculate range, quartile deviation, mean deviation and standard deviation and standard deviation for ungrouped and grouped data set Choose appropriate measure of dispersion to calculate spread of data 	 Mean deviation around mean and median Standard deviation and variance Examples of different kinds of data helping students to choose and compare different measures of dispersion
6.2	Percentile rank	 Define Percentile rank Calculate and interpret Percentile rank of scores in a given ungrouped data set 	 Emphasis on visualizing, analysing and interpreting percentile rank scores
6.3	Correlation	 Define correlation in values of two data sets Calculate Spearman's rank correlation for ungrouped data Interpret the coefficient of correlation 	 Emphasis on application, analysis and interpreting the results of coefficient of correlation using practical examples
UNIT	-7 FINANCIA	L MATHEMATICS	
7.1	Interest and Interest Rates	 Define the concept of Interest Rates Compare the difference between Nominal Interest Rate, Effective Rate and Real Interest Rate Solve Practical applications of interest rate 	 Impact of high interest rates and low interest rates on the business.

7.2	Accumulation with simple and compound interest	 Interpret the concept of simple and compound interest Calculate Simple Interest and Compound Interest 	 Meaning and significance of simple and compound interest Compound interest rates applications on various financial products
7.3	Simple and compound interest rates with equivalency	 Explain the meaning, nature and concept of equivalency Analyze various examples for understanding annual equivalency rate 	 Concept of Equivalency Annual Equivalency Rate
7.4	Effective rate of interest	 Define with examples the concept of effective rate of interest 	• Effective Annual Interest Rate $\left(1+\frac{i}{n}\right)^n - 1$ where: i = Nominal Interest Rate n = No. of Periods
7.5	Annuities, Calculating value of Regular Annuity	 Explain the concept of Immediate Annuity, Annuity due and Deferred Annuity Calculate General Annuity 	 Definition, Formulae and Examples
7.6	Simple applications of regular annuities (up to 3 period)	 Calculate the future value of regular annuity, annuity due Apply the concept of Annuity in real life situations 	 Examples of regular annuity: Mortgage Payment, Car Loan Payments, Leases, Rent Payment, Insurance payouts etc.
7.7	Tax, calculation of tax, simple applications of tax calculation in Goods and service tax, Income Tax	 Explain fundamentals of taxation Differentiate between Direct and indirect tax Define and explain GST Calculate GST Explain rules -under State Goods and Services Tax (SGST) Central Goods and Services Tax (CGST) and Union Territory. Goods and Services Tax (UTGST) 	 Computation of income tax Add Income from salary, house property, business or profession, capital gain, other sources, etc. Less deductions: PF, PPF, LIC, Housing Ioan, FD, NSC etc. Assess the Individuals under Income Tax Act Formula for GST – Different Tax heads under GST

7.8	Bills, tariff rates, fixed charge, surcharge, service charge	 Describe the meaning of bills and its various types Analyze the meaning and rules determining tariff rates Explain the concept of fixed charge 	 Tariff rates- its basis of determination Concept of fixed charge service charge and their applications in various sectors of Indian economy
7.9	Calculation and interpretation of electricity bill, water supply bill and other supply bills	 To interpret and analyze electricity bills, water bills and other supply bills Evaluate how to calculate units consumed under electricity bills/water bill. 	 Components of electricity bill/water bill and other supply bills: i) overcharging of electricity ii) units consumed in water supply bills iii) units consumed in electricity bills
	-8 COORDINA	TE GEOMETRY	
8.1	Straight line	 Find the slope and equation of line in various form Find angle between the two lines Find the perpendicular distance of a given point from a line Find the distance between two parallel lines 	 Gradient of a line Equation of line: Parallel to axes, point-slope form, two-points form, slope intercept form, intercept form Application of the straight line in demand curve related to economics problems
8.2	Circle	 Define a circle Find different form of equations of a circle Solve problems based on applications of circle 	 Circle as a locus of a point in a plane Equation of a circle in standard form, central form, diameter form and general form
8.3	Parabola	 Define parabola and related terms 	 Parabola as a locus of a point in a plane. Equation of a parabola in standard form.

Practical: Use of spreadsheet

Calculating average, interest (simple and compound), creating pictographs, drawing pie chart, bar graphs, calculating central tendency visualizing graphs (straight line, circles and parabola using real-time data)

Suggested practical using spreadsheet

- 1. Plot the graph of functions on excel study the nature of function at various points, drawing lines of tangents
- 2. Create a budget of income and spending
- 3. Create and compare sheet of price & features to buy a product
- 4. Prepare the best option plan to buy a product by comparing cost, shipping charges, tax and other hidden costs
- 5. Smart purchasing during sale season
- 6. Prepare a report card using scores of the last four exams and compare the performance
- 7. Collect the data on weather, price, inflation, and pollution. Sketch different types of graphs and analyze the results.

Grade XII (2025-26)

Number of Paper:1Time:3 HoursMax Marks:80

No.	Units	Marks		
I	Numbers, Quantification and Numerical	11		
	Applications			
II	Algebra	10		
	Calculus	15		
IV	Probability Distributions	10		
V	Inferential Statistics	05		
VI	Time-based data	06		
VII	Financial Mathematics	15		
VIII	Linear Programming	08		
	Total 80			
	Internal Assessment	20		

<u>CLASS- XII</u>			
SI. No.	Contents	Learning Outcomes: Students will be able to	Notes / Explanation
UNIT	– 1 NUMBERS, G	QUANTIFICATION AND NUMERI	CAL APPLICATIONS
Numb	ers & Quantificat	ion	
1.1	Modulo Arithmetic	 Define modulus of an integer Apply arithmetic operations using modular arithmetic rules 	 Definition and meaning Introduction to modulo operator Modular addition and subtraction
1.2	Congruence Modulo	 Define congruence modulo Apply the definition in various problems 	 Definition and meaning Solution using congruence modulo Equivalence class
1.3	Alligation and Mixture	 Understand the rule of alligation to produce a mixture at a given price Determine the mean price of a mixture Apply rule of allegation 	 Meaning and Application of rule of alligation Mean price of a mixture
1.4	Numerical Problems	Solve real life problems mathema	atically
	Boats and Streams (upstream and downstream)	 Distinguish between upstream and downstream Express the problem in the form of an equation 	 Problems based on speed of stream and the speed of boat in still water
	Pipes and Cisterns	 Determine the time taken by two or more pipes to fill or empty the tank 	 Calculation of the portion of the tank filled or drained by the pipe(s) in unit time
	Races and Games	 Compare the performance of two players w.r.t. time, distance 	 Calculation of the time taken/ distance covered / speed of each player
1.5	Numerical Inequalities	 Describe the basic concepts of numerical inequalities Understand and write numerical inequalities 	 Comparison between two statements/situations which can be compared numerically Application of the techniques of numerical solution of algebraic inequations

UNIT-	2 ALGEBRA		
2.1	Matrices and types of matrices	 Define matrix Identify different kinds of matrices. Find the size / order of matrices 	 The entries, rows and columns of matrices Present a set of data in a matrix form
2.2	Equality of matrices, Transpose of a matrix, Symmetric and Skew symmetric matrix	 Determine equality of two matrices Write transpose of given matrix Define symmetric and skew symmetric matrix 	 Examples of transpose of matrix A square matrix as a sum of symmetric and skew symmetric matrix Observe that diagonal elements of skew symmetric matrices are always zero
2.3	Algebra of Matrices	 Perform operations like addition & subtraction on matrices of same order Perform multiplication of two matrices of appropriate order Perform multiplication of a scalar with matrix 	 Addition and Subtraction of matrices Multiplication of matrices (It can be shown to the students that Matrix multiplication is similar to multiplication of two polynomials) Multiplication of a matrix with a real number
2.4	Determinants	 Find determinant of a square matrix 	 Singular matrix, Non- singular matrix AB = A B Simple problems to find determinant value
2.5	Inverse of a matrix	 Define the inverse of a square matrix Apply properties of inverse of matrices 	 Inverse of a matrix using cofactors If A and B are invertible square matrices of same size, i) (AB)⁻¹ = B⁻¹A⁻¹ ii) (A⁻¹)⁻¹ = A iii) (A')⁻¹ = (A⁻¹)'
2.6	Solving system of simultaneous equations using matrix method and Cramer's rule	 Solve the system of simultaneous equations using i) Cramer's Rule ii) Inverse of coefficient matrix Formulate real life problems into a system of simultaneous linear equations and solve it using these methods 	 Solution of system of simultaneous equations up to three variables only (non- homogeneous equations)

UNIT-3 CALCULUS

Differentiation and its Applications

3.1	Derivatives up to second order	 Determine derivatives up to second order Understand differentiation of parametric functions and implicit functions 	 Simple problems based on up to second order derivatives Differentiation of parametric functions and implicit functions (upto 2nd order) 	
3.2	Application of Derivatives	 Determine the rate of change of various quantities 	 To find the rate of change of quantities such as area and volume with respect to time or its dimension 	
3.3	Marginal Cost and Marginal Revenue using derivatives	 Define marginal cost and marginal revenue Find marginal cost and marginal revenue 	 Examples related to marginal cost, marginal revenue, etc. 	
3.4	Increasing /Decreasing Functions	 Determine whether a function is increasing or decreasing Determine the conditions for a function to be increasing or decreasing 	 Simple problems related to increasing and decreasing behaviour of a function in the given interval 	
3.5	Maxima and Minima	 Determine critical points of the function Find the point(s) of local maxima and local minima and corresponding local maximum and local minimum values Find the absolute maximum and absolute minimum value of a function Solve applied problems related to optimization of cost, revenue and profit only. 	 A point x = c is called the critical point of f if f is defined at c and f'(c) = 0 or f is not differentiable at c To find local maxima and local minima by: i) First Derivative Test ii) Second Derivative Test Contextualized real life problems 	
Integration and its Applications				
3.6	Integration	Understand and determine indefinite integrals of simple functions as anti- derivative	 Integration as a reverse process of differentiation Vocabulary and Notations related to Integration 	

3.7	Indefinite Integrals as family of curves	 Evaluate indefinite integrals of simple algebraic functions by method of: i) substitution ii) partial fraction iii) by parts 	• Simple integrals based on each method (non-trigonometric function)	
3.8	Definite Integrals as area under the curve	 Define definite integral as area under the curve Understand fundamental theorem of Integral calculus and apply it to evaluate the definite integral 	• Evaluation of area under simple algebraic curves up to 2 nd degree.	
3.9	Application of Integration	 Identify the region representing consumer surplus and producer surplus graphically Apply the definite integral to find consumer surplus- producer surplus 	 Problems based on finding Total cost when Marginal Cost is given Total Revenue when Marginal Revenue is given Equilibrium price and equilibrium quantity and hence consumer and producer surplus 	
Differ	Differential Equations and Modeling			
3.10	Differential Equations	 Recognize a differential equation Find the order and degree of a differential equation 	 Definition, order, degree and examples 	
3.11	Formulating and Solving Differential Equations	 Formulate differential equation Verify the solution of differential equation Solve simple differential equation using variable separable method only 	 Formation of differential equation by eliminating arbitrary constants Solution of simple differential equations (direct integration only) 	
UNIT- 4 PROBABILITY DISTRIBUTIONS				
4.1	Probability Distribution	 Understand the concept of Random Variables and its Probability Distributions Find probability distribution of discrete random variable 	• Definition and example of discrete and continuous random variable and their distribution	
4.2	Mathematical Expectation	 Apply arithmetic mean of frequency distribution to find the expected value of a random variable 	• The expected value of discrete random variable as summation of product of discrete random variable by the probability of its occurrence.	
4.3	Variance	 Calculate the Variance and S.D. of a random variable 	 Questions based on variance and standard deviation 	

4.4	Binomial Distribution	 Identify the Bernoulli Trials and apply Binomial Distribution Evaluate Mean, Variance and S.D of a binomial distribution 	• Characteristics of binomial distribution • Binomial formula: $P(r) = n_{C_r} p^r q^{n-r}$ Where n = number of trials p =probability of success q = probability of failure Mean = np Variance = npq Standard deviation = \sqrt{npq}
4.5	Poison Distribution	 Understand the Conditions of Poisson Distribution Evaluate the Mean and Variance of Poisson distribution 	• Characteristics of Poisson Probability distribution Poisson formula: $P(X) = \frac{\lambda^{x}e^{-\lambda}}{x!}$ • Mean = Variance = λ
4.6	Normal Distribution	 Understand normal distribution is a Continuous distribution Evaluate value of Standard normal variate Area relationship between Mean and Standard Deviation 	 Characteristics of a normal probability distribution Total area under the curve = total probability = 1 Standard Normal Variate: Z = x-μ/σ, where x = value of random variable, μ = mean, σ = S.D
	- 5 INFERENTIAL	STATISTICS	- Dopulation data from
0.1	Sample	 Define Population and Sample Differentiate between population and sample Define a representative sample from a population Differentiate between a representative and non- representative sample Draw a representative sample using simple random sampling Draw a representative sample using and systematic random sampling 	 Population data from census, economic surveys and other contexts from practical life Examples of drawing more than one sample set from the same population Examples of representative and non-representative sample Unbiased and biased sampling Problems based on random sampling using simple random sampling and systematic random sampling (sample size less than 100)

5.2	Parameter and Statistics and Statistical Interferences	 Define Parameter with reference to Population Define Statistics with reference to Sample Explain the relation between Parameter and Statistic Explain the limitation of Statistic to generalize the estimation for population Interpret the concept of Statistical Significance and Statistical Inferences State Central Limit Theorem Explain the relation between Population-Sampling Distribution-Sample 	 Conceptual understanding of Parameter and Statistics Examples of Parameter and Statistic limited to Mean and Standard deviation only Examples to highlight limitations of generalizing results from sample to population Only conceptual understanding of Statistical Significance/Statistical Inferences Only conceptual understanding of Sampling Distribution through simulation and graphs
5.3	t-Test (one sample t-test and for a small group sample)	 Define a hypothesis Differentiate between Null and Alternate hypothesis Define and calculate degree of freedom Test Null hypothesis and make inferences using t-test statistic for one group 	 Examples and non- examples of Null and Alternate hypothesis (only non- directional alternate hypothesis) Framing of Null and Alternate hypothesis Testing a Null Hypothesis to make Statistical Inferences for small sample size (for small sample size: t- test for one group)
UNIT -	-6 TIME-BASED	DATA	
6.1	Time Series	 Identify time series as chronological data 	 Meaning and Definition
6.2	Components of Time Series	 Distinguish between different components of time series 	 Secular trend Seasonal variation Cyclical variation Irregular variation
6.3	Time Series analysis for univariate data	 Solve practical problems based on statistical data and interpret the result 	 Fitting a straight-line trend and estimating the value
6.4	Secular Trend	 Understand the long-term tendency 	•The tendency of the variable to increase or decrease over a long period of time
6.5	Methods of Measuring trend	 Demonstrate the techniques of finding trend by different methods 	 Moving Average method Method of Least Squares

UNIT - 7 FINANCIAL MATHEMATICS				
7.1	Perpetuity, Sinking Funds	 Explain the concept of perpetuity and sinking fund Calculate perpetuity Differentiate between sinking fund and saving account 	 Meaning of Perpetuity and Sinking Fund Real life examples of sinking fund Advantages of Sinking Fund Sinking Fund vs. Savings account 	
7.2	Valuation of Bonds	 Define the concept of valuation of bond and related terms. Calculate value of bond using present value approach 	 Meaning of Bond Valuation Terms related to valuation of bond: Coupon rate, Maturity rate and Current price. Bond Valuation Method: Present Value Approach 	
7.3	Calculation of EMI	 Explain the concept of EMI Calculate EMI using various methods 	 Methods to calculate EMI: i) Flat-Rate Method ii) Reducing-Balance Method Real life examples to calculate EMI of various types of loans, purchase of assets, etc. 	
7.4	Compound Annual Growth Rate	 Understand the concept of Compound Annual Growth Rate Differentiate between Compound Annual Growth Rate and Annual Growth Rate Calculate Compound Annual Growth Rate 	 Meaning and use of Compound Annual Growth Rate Formula for Compound Annual Growth Rate 	
7.5	Linear method of Depreciation	 Define the concept of linear method of Depreciation Interpret cost, residual value and useful life of an asset from the given information Calculate depreciation 	 Meaning and formula for Linear Method of Depreciation Advantages and disadvantages of Linear Method 	
UNIT -	UNIT - 8 LINEAR PROGRAMMING			
8.1	Introduction and related terminology	 Familiarize with terms related to Linear Programming Problem 	 Need for framing linear programming problem Definition of Decision Variable, Constraints, Objective function, Optimization and Non negative constraints 	

8.2	Mathematica I formulation of Linear Programmin g Problem	Formulate Linear Programming Problem upto 3 non-trivial constraints	 Set the problem in terms of decision variables, identify the objective function, identify the set of problem constraints, express the problem in terms of inequations
8.3	Different types of Linear Programming Problems	 Identify and formulate different types of LPP 	 Formulate various types of LPP's like Manufacturing Problem, Diet Problem etc.
8.4	Graphical method of solution for problems in two variables	 Draw the Graph for a system of linear inequalities involving two variables and to find its solution graphically 	 Corner Point Method for the Optimal solution of LPP
8.5	Feasible and Infeasible Regions	 Identify feasible, infeasible, bounded and unbounded regions 	 Definition and Examples to explain the terms
8.6	Feasible and infeasible solutions, optimal feasible solution	 Understand feasible and infeasible solutions Find optimal feasible solution 	 Problems based on optimization Examples of finding the solutions by graphical method

Practical: Use of spreadsheet

Graphs of an exponential function, demand and supply functions on Excel and study the nature of function at various points, maxima/minima, Matrix operations using Excel

Suggested practical using the spreadsheet

- i) Plot the graphs of functions on excel and study the graph to find out the point of maxima/minima
- ii) Probability and dice roll simulation
- iii) Matrix multiplication and the inverse of a matrix
- iv) Stock Market data sheet on excel
- v) Collect the data on weather, price, inflation, and pollution analyze the data and make meaningful inferences
- vi) Collect data from newspapers on traffic, sports activities and market trends and use excel to study future trends

List of Suggested projects (Class XI /XII)

- i) Use of prime numbers in coding and decoding of messages
- ii) Prime numbers and divisibility rules
- iii) Logarithms for financial calculations such as interest, present value, future value, profit/loss etc. with large values)
- iv) The cardinality of a set and orders of infinity
- v) Comparing sets of Natural numbers, rational numbers, real numbers and others
- vi) Use of Venn diagram in solving practical problems
- vii) Fibonacci sequence: Its' history and presence in nature
- viii) Testing the validity of mathematical statements and framing truth tables
- ix) Investigating Graphs of functions for their properties
- x)
 Visit
 the
 census
 site
 of
 India

 http://www.censusindia.gov.in/Census_Data_2001/Census_Data_0nline/Languag
 e/State ment3.html
 Depict the information given there in a pictorial form
- xi) Prepare a questionnaire to collect information about money spent by your friends in a month on activities like travelling, movies, recharging of the mobiles, etc. and draw interesting conclusions
- xii) Check out the local newspaper and cut out examples of information depicted by graphs. Draw your own conclusions from the graph and compare it with the analysis given in the report
- xiii) Analysis of population migration data positive and negative influence on urbanization
- xiv) Each day newspaper tells us about the maximum temperature, minimum temperature, and humidity. Collect the data for a period of 30 days and represent it graphically. Compare it with the data available for the same time period for the previous year
- xv) Analysis of career graph of a cricketer (batting average for a batsman and bowling average for a bowler). Conclude the best year of his career. It may be extended for other players also tennis, badminton, athlete
- xvi) Vehicle registration data correlating with pollution and the number of accidents
- xvii) Visit a village near Delhi and collect data of various crops over the past few years from the farmers. Also, collect data about temperature variation and rain over the period for a particular crop. Try to find the effect of temperature and rain variations on various crops
- xviii) Choose any week of your ongoing semester. Collect data for the past 10 15 years for the amount of rainfall received in Delhi during that week. Predict the amount of rainfall for the current year
- xix) Weather prediction (prediction of monsoon from past data)
- xx) Visit Kirana shops near your home and collect the data regarding the sales of certain commodities over a month. Try to figure out the stock of a particular commodity which should be in the store in order to maximize the profit
- xxi) Stock price movement
- xxii) Risk assessments by insurance firms from data
- xxiii) Predicting stock market crash
- xxiv) Predicting the outcome of an election exit polls
- xxv) Predicting mortality of infants